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Abstract 
 

Verifying the reliability and functionality of a complex system like a trading system is highly 
demanding since failure in such a system can cause serious economic problems. Automated 
random testing is a good solution to find new and rare failures in such a system. Test cases in 
random testing usually contain a long sequence of actions that debugging them manually to find 
the root cause of the failure is a very boring and tiresome task. 
 
This thesis aims to create a model for automating the task of the debugging to reduce the failed 
test case to an equivalent test case that only contains relevant actions that together cause the 
failure. Delta debugging is the core algorithm of the model that simplifies a failed test case by 
successive testing. 
 
The target of the project is TRADExpress system of Cinnober Financial Technology AB. The 
model is integrated to the random testing framework of the TRADExpress system. 
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1 Introduction 
 
Debugging computer programs, the process of identifying and correcting the root cause of a 
failure is a difficult, labor-intensive and time consuming activity in software development. When 
one observes a failure, setups a number of hypotheses to track the effects and causes of the 
failure which one confirms or rejects. Frequent making and refuting hypotheses is very tedious 
and chaotic; the solution to this problem is systematic and automated debugging that makes the 
bug fixing faster and efficient and more effectively increases productivity [4]. 
 
By automating the debugging one can take the advantages of [3]: 

• Reusing the existing tests (for instance, to test a new version of a program) 
• Performing tests which are difficult or impossible to carry out manually (such as massive 

random tests) 
• Making tests repeatable 
• Increasing confidence in the software 

 
The Delta Debugging algorithm is an automated and systematic approach that simplifies a failing 
test case by narrowing down failure-inducing circumstances by successive testing till remaining 
a minimal set that still produces the failure. The Delta Debugging algorithm will be fully covered 
in detail in chapter 4. 
 

1.1 Previous works at Cinnober 

So far several master theses were developed in Cinnober about random testing. In [19], the 
author conducts a theoretical study of random tests and develops a random test framework using 
trading simulations in order to find low frequent errors in the trading system. The tests are 
analyzed by various types of test oracles and at last the best oracle that fits in random testing is 
selected. This work is extended in [12] by analyzing the input data and providing realistic input 
domain for the random testing. Both works [19] and [12] lack an automated system to verify the 
correctness of the trading output. This problem is solved in [6] where constraint programming is 
employed to develop a test oracle that automatically predicts the system’s output correctness. 
 

1.2 Problem statement 

Randomized unit test cases are very effective in finding low frequency bugs in a program. 
However, failed test cases often comprise long sequences of method calls; reproducing and 
manually debugging them to find the failure root is cumbersome. In Cinnober’s TRADExpress 
system, we are interested in sequence of transactions that together make the failure; usually there 
are massive numbers of transactions that are irrelevant to the failure and reproducing those takes 
a lot of time. Furthermore, state dependency among the transactions makes the debugging 
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process even more difficult. The need of designing a model for this system to make the 
debugging task more efficient, faster and easier is undeniable. 
 

1.3 Goals 

The goal of this project is to design and develop a model for randomized test case simplification. 
The model will be integrated into existing random testing framework of Cinnober TRADExpress 
system. The work requires producing transactions' log for the purpose of replaying subsets of a 
given random test. The failing test case should be minimized to reach the minimal failing test 
case which contains only the transactions that are relevant to the failure. For evaluation purpose, 
the model is fed with artificial failures to measure the time complexity in several situations of 
interest. 
 

1.4 Related Works 

Delta debugging as a general algorithm for minimizing the failure-inducing inputs is utilized in 
many other researches. These works have focused either to apply delta debugging on inputs that 
are difficult to debug or to speed up the algorithm. 
 
In [1], delta debugging algorithm is used to isolate interactions that are relevant for failure in a 
large system. In [6] and [18], this algorithm is applied on chain of system variables and threads 
respectively. 
 
In [2], the delta debugging is used in combination with static slicing approach to make the test 
case minimization process faster. This method is applicable to program statements since it finds 
the slice of the program that is relevant to the failure. In another research [16], authors proposed 
a method called Hierarchical Delta Debugging to speed up the delta debugging and increase its 
output quality on tree structured inputs.  
 
In this thesis work, the delta debugging will be applied to the transactions communicated in a 
trading system to isolate the chain of the transactions that cause a failure. 
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2 Random Testing 
 
Software development is always subject to the errors defined as human action that produces an 
incorrect result. Errors or mistakes can occur in design or build phases of software development. 
These mistakes are known as defects or bugs. Any defect that may cause the system to fail after 
system execution is called failure. The goal of software testing is increasing the quality of the 
software by minimizing the number of defects and also to check if the software meets the system 
requirements and as well as user and customer’s needs and expectations [13]. 
 
Software testing comprises two types of tests: manual software testing and automated software 
testing. The former is performed by a human that tests different combination of inputs and 
compares the result with expected result. The latter can be performed by a tool that tests pre-
defined actions and compares the output with the expected results and reports failure or success 
of the test [21]. 
 
A more advanced level in test automation includes auto-generation of test cases, and mechanisms 
to automatically detect system failures called Random testing. In random testing (Monte-Carlo 
testing) the program under test is fed with randomly generated inputs from a preselected input 
domain. The correctness of the output is determined by an oracle that analyzes the expected 
output with the real output of the program [19]. 
 
The three different challenges in designing a successful random test environment are [17]: the 
input, the oracle and the output. 
 

2.1 The Input 

The input is determined by three characteristics; the domain from which input data is extracted, 
the type of distribution that the test follows either realistic or unrealistic and the size of the input. 
Good design of these characteristics is a key success to a reliable result achievement [20]. 
 

2.1.1 Domain 

The input domain of a complex system is practically infinite but it is possible to partition the 
input into sub domains and feed the system with the data of the sub domains. Employing this 
strategy makes it possible to test functionality of the different parts of the program [17]. 

2.1.2 Distribution 

The input can be generated from realistic and unrealistic distributions; to achieve a successful 
random test strategy both distributions are important. A trivial way of obtaining realistic data is 
using the historical data of the previous trading days which tests the existing functionality hence 
helps to assess the reliability of the system. By feeding the system with unrealistic data it is 
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possible to generate sequence of transactions that have not been executed in the system to find 
the low frequent bugs in the system [17]. 
 

2.1.3 Size 

The number of actions in a test case to be generated and the running time in random testing 
depends on the purpose of the test and the structure of the system. If the intention of the test is to 
test the reliability of the program, the test should generate the realistic data in enough time. 

2.2 Oracles 

An oracle is a mechanism to verify if the output of the system under test is the one expected 
based on the input. Oracles have different complexity with regard to the goal of the testing and 
type of the software. A software program based on the multiplicity of input forms or different 
characteristics in a program (for example a program's results may include computed functions, 
screen navigations, and synchronous event handling) may require several oracles [15]. The basic 
structure of random testing with an oracle is shown in figure 2.1. 
 

 
 

Figure  2.1: Random testing with an oracle 

 

2.2.1 Oracle Characteristics 

There are many tradeoffs in design of a test oracle that must be taken into account. The more 
complete an oracle is the more complex it has to be. An oracle with better prediction about 
program state and environment conditions is more dependent to the software under test (SUT). 
This dependency makes the oracle maintenance more difficult and also faults may be missed as 
both SUT and the oracle may contain the fault [15]. 
 

2.2.2 Types of Oracles 

Oracles vary widely in their characteristics; the types of the oracles can be categorized based 
upon the outputs from the oracle rather than the method of generation of the results. The oracles 
are identified in four types: True, Heuristic, Consistent and Self-referential [15]. 
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True Oracle 
This type of oracle has no dependency to the SUT and is implemented using independent 
platform, algorithms, code and etc. The SUT and the oracle are fed with the same data for results 
comparison. True oracles are extremely expensive to develop and maintain, and are often used to 
test the system for specific input sub domains. 
 
Heuristic Oracle 
A heuristic oracle uses simplified algorithms and the verification often is done by checking the 
output based on the detected pattern in it. It cannot exactly verify that the result is correct, but 
can assess whether the result is likely to be correct or incorrect. The heuristic oracle is very easy 
to implement compared to true oracles and runs much faster and will find most faults. On the 
other hand, historical defects are likely to remain undetected, as the potential wrong output does 
not change over the different runs. 
 
Consistent Oracle 
A consistent oracle uses the results from one test run as the expected output for the next run. This 
oracle is useful for regression test to verify that changes do not affect the program correctness. 
The defect of this oracle is that the historical faults remain since wrong output will be identical in 
an old and a new test. 
 
Self-referential Oracle 
In a self-referential oracle, the results are embedded in the input as part of the test mechanism. 
When for example testing a database system, one of the data fields could explain the expected 
relationship between fields or records. A random number seed can be included in the input data 
so the test can be rerun with the same random number series. The advantages of a Self-
Referential oracle are that one can generate and verify large amounts of complex data and that it 
allows extensive post-test analysis [15]. 
 

2.3 The output 

The output of a random test not only reveals the defects but also shows if the system is reliable. 
Software reliability is defined as “the probability of failure-free software operation for a 
specified period of time in a specified environment” [14]. In this section, fundamentals of 
software reliability are covered in some details. 
 
2.3.1 Reliability models 

Software reliability models are divided into two subcategories: prediction modeling and 
estimation modeling. Both models are based on failure data observation and the statistical data 
analysis. Prediction models use the historical data and predict the reliability before system 
deployment whereas estimation models use data from the current software development and 
estimate the number of defects has remained in the system or the time between failures [19]. 
 
Reliability models require some assumptions that some of the common ones are listed below 
[20]: 
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• Times between failures are independent. 
• No new defects are introduced during the defect removal process. 
• Each defect has equal probability of exposure. 
• The system is immediately repaired after a failure. 
• Failure rate is proportional to the number of remaining defects. 
 

2.3.2 Reliability estimation 

One of the ways to measure the reliability of a system is measuring the rate of the failure (λ). By 
measuring the time between each failure we can estimate the Mean Time Between Failures 
(MTBF) and thus failure rate λ, where λ = 1 / MTBF. The number of failures in a period of time 
is modeled as a random variable X є Poison (λ). The probability of k faults occurring in the time 
T is calculated as:  

 

ܲሼܺ ൌ ݇ሽ ൌ
ሺܶߣሻ௞

݇!  ݁ିఒ் 
                   Formula 2.1 
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3 The Trading System 
 

A financial market is a system where sellers and buyers exchange many different physical or 
non-physical items. By introducing electronic trading, traditional financial markets have 
extremely changed during last decades. Now, majority of financial markets utilize computer 
programs to make the order movements faster by excluding the direct human intervention and 
automating the trade’s transactions [7]. 

The TRADExpress developed by Cinnober Company is the target system of this master thesis. It 
is developed in Java and its robust infrastructure enables high-content, customized solutions to 
be delivered with short time-to-market [11]. 
  

3.1 Structure 

This section gives an overview of the main structure of markets. 

3.1.1  Type of the market  

Trading in markets comprises exchanging of physical or non-physical valuable items, so called, 
financial instruments (or instruments). Some markets are specialized for exchanging in specific 
types of instruments whereas TRADExpress handles variety of instrument types within the same 
solution such as equities, commodity futures, warrants and etc [7].  

  

3.1.2 Market participants 

Market participants can be defined as the people and institutions that interact in a financial 
market. The set of actors varies in a market based on the market type. However, it is possible to 
identify four main participants on a financial market place [7]: 

  
• Customers: invest/disinvest their money by means of buying or selling securities. 

Customers could be institutions or physical persons. 
• Brokers: Act as an agent on behalf of customers and facilitate the trade for the customers 

by providing the client with information and advices. 
• Dealers: trade on own behalf, assuming thus the risk of their operations 
• Market makers: Or specialists have a pivotal position in market places and make their 

money selling to a higher price than they buy to. Add continuity to the market trade flow 
by ensuring that there is always a counterpart to trade with.  
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3.2 Architecture 

One of the main concerns in TRADExpress design is customization which differentiates it from 
other trading systems. To fulfill this requirement the products are formed of three abstraction 
layers (Figure 3.1): 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

• Customization and Configuration layer: allows adding customer specific business rules, 
trading strategies, etc. 

• Trading layer:  includes business component library and application components 
• Platform layer: includes middle ware, persistence and application infrastructure  

  
The layered architecture of the servers facilitates developers with fast customization and 
furthermore provides extensibility, scalability, reliability, flexibility and low latency [20][21].  
  
TRADExpress trading system is made up several servers that can communicate with the clients 
via two protocols: External Messaging Application Programming Interface (EMAPI) and 
Financial Information eXchange (FIX). The EMAPI is a session based API that handles lower 
level transport of messages using TCP/IP and multicast. FIX is a standard, widely used protocol 
for trading systems maintained by FIX Protocol Ltd [8][20]. 
  
Figure 3.2 presents the servers that provide the basic functionality of TRADExpress: 
 
 

• Trading Application multipleXer (TAX): handles connections to external systems, 
converts external protocols and routes transactions 

• Matching Engine (ME): handles the business functionality of the system: processing of 
trade orders, information dissemination to different connections, etc.  

• Query Server (QS): maintains a copy of the state for different instruments, and serves 
some client queries in order to lower the load of the ME.  

• Common Data (CD): The repository for all reference data and broadcasts reference data 
changes 

Customization

Trading (Business modules) 

              TRADExpress platform 

Figure  3.1: TRADExpress System Architecture
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• History Server (HS): stores historic events in a database (such as order events and trades) 
and serves queries from TAX 

 

 

Figure  3.2: Main components of TRADExpress trading system (Adapted from ([8])) 

 

3.3 Trading orders 

3.3.1 Order Book 
The order book is the core component of a trading system where the orders that are placed on an 
exchange by market participants are registered and displayed. The order book can be either 
public or private. In public order book the orders are visible to any market participant but 
anonymous to prevent misconduct, whereas the private order book is only visible to a specific 
participant and displays the orders placed by that very participant [7].  
The order book's structure is divided into two sides; bid side and ask side that respectively 
present buy orders and sell orders (figure 3.3). The orders are sorted descending based on their 
priority in the order book. These orders are matched against each other. The matching 
mechanism is described in 3.4.  
 
 

Bid side Ask side 
b0: bid order with highest priority 
. 
. 
. 
bn: bid order with lowest priority 

a0: ask order with highest priority 
. 
. 
. 
an: ask order with lowest priority 

 

Figure  3.3: Order book structure 
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3.3.2 Orders Attributes 

Various attributes could be attached to an order that combination of those make specific orders 
that meet the participant's preferences. Also these attributes show the order's priority in order 
book. The orders attributes come with their description in the following [7]: 
 

• Side: The fundamental component that should be specified to recognize if the order is a 
sell or a buy order. 

• Quantity: Shows the amount of the order that may be traded, it is possible to choose if the 
whole quantity of the order should be executed or partial filling is also accepted. 

• Price Condition: Specifies which prices are accepted for trading and how they should be 
formed: 

o Market price: the order will be executed at the price set by the market. 
o Limit Price: the order will be executed if the trade price is as good as or better than 

a given one. 

o Pegged Order: the accepted execution price of the order depends on other prices. 
 

• Visibility: Specifies if the order is transparent (visible in the public order book), or dark 
(visible only in the private order book). 

• Validity period (Duration): Specifies the start and end of the period when an order is 
allowed to match  

 

3.3.3  Order Types 

Combining the order attributes of the section 3.3.2 provides different trading strategies for 
TRADExpress participants. Table 3.1 shows variety of the order types. P and q in the table stand 
for price and quantity respectively [7]. 
 
Type Description 
Market Executed at the price set by the market and 

then cancelled. 
Limit Executed if the price is equal or better than p. 
Fill-or-Kill (FoK) Either executed at the whole quantity q when 

inserted or cancelled. 
Fill-and-Kill (FaK) Executed when inserted, the remaining 

quantity (if any) is cancelled. 
All-or-none (AoN) Executed only at the whole quantity q. 
Iceberg Executed considering the quantity q, but just 

showing the public quantity pq. 
Pegged Executed at the best price in its side plus some 

price offset Po. Cancelled if there are no orders 
to peg to. 

 

Table  3.1: Trading strategies 
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3.3.4 Order Priority 

The orders are prioritized in the order book regarding following attributes. The order with 
highest priority is eligible to be traded first [7]: 
 

• Price: the order with the better price gets higher priority; better price for buy side is one 
with higher price and for the sell side is one with lowest price. 

• Visibility: transparent (not dark) orders get higher priority 
• Quantity: orders with minimum quantity get higher priority 
• Time: orders inserted earlier in time get higher priority 

 
The following example shows how orders are prioritized in buy side of the order book. From 
now on the following notions (Table 3.2) will be used to present different order types [20]: 
 
Notation Description 
q @ p A limit order with limit quantity q and limit price p  
q ( ≥ qm) @ p A minimum quantity limit order with quantity q, minimum quantity qm and 

limit price p 
q ( ≥ q) @ p An all-or-none order with quantity q and limit price p 

Table  3.2: Different types of orders 

 
The following example shows the prioritizing of orders in TRADExpress; suppose that the 
following bid orders are entered to the order book consecutively: 
 

• 10 @ 9 
• 10 (≥ 10) @ 10 
• 10 @ 10 
• 10 @ 10 (dark) 

 
The orders will be prioritized like the table below:  
 

Bid Ask 
b0: 10 @ 10  
b1: 10 (≥ 10) @ 10  
b2: 10 @ 10 (dark)  
b3: 10 @ 9  

 
b0 gets higher priority as it has the better price in bid side; b1 gets higher priority than b2 because 
it is transparent order. b2 gets higher priority than b3 for the better price. 
 

3.3.5 Trading States 

The trading state can be either call auction or continuous. In call auction state the orders are 
accumulated during a period and at a specified time they are executed at a single price, the 
equilibrium price, which is set to the level that will result in the largest tradable volume. In 
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continuous state, the orders could be executed at any time. The incoming order is matched 
against the corresponding order; otherwise it is saved in order book till matching with another 
order [7].  
 

3.4 Order Matching 

As mentioned in previous section, there are two trading states in the system. In call auction state 
no trades are executed till the system goes to the continuous state, when a single price is 
calculated as an equilibrium price. At the equilibrium price, all the bid orders above the price and 
all ask orders below the price are traded; also maximum turnover is attained. 
 
In continuous state, auto-matching is used as the matching mechanism. In auto-matching, an 
incoming order can be matched only against order(s) in another side of the order book. A limit 
bid order is matched against order(s) on the ask side which have equal or lower price than the 
limit bid price. The price of the trade is set by the resting order; it means that if two orders have 
the eligibility for matching, the price of the trade would be the price of the order that was resting 
in order book before another order entered. 
 

3.5 EMAPI  

EMAPI (external message application programming interface) is a proprietary interface that 
provides access to the TRADExpress trading system for clients. Through the EMAPI, with 
granted access, an application can access to all the information and all services [8]. EMAPI 
provides a huge number of messages for market management, data handling and etc. The focus 
of this project is applying delta debugging on messages that are communicated between the 
client and the TRADExpress trading system. To ease the report for readers, it is avoided to 
describe the messages in detail; in the next chapter some messages that have been used in the 
implementation and test of this project will be introduced in brief. 
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4 Delta Debugging 
 

One of the steps in debugging a program is automating and simplifying the failing test case. After 
reproducing the failure, it is the time to simplify the test case and remove the circumstances that are not 
relevant to the failure. A circumstance is said to be relevant if it is required to make the failure and it is 
irrelevant if the failure occurs whether the circumstance is present or not. The Delta Debugging 
algorithm automatically simplifies a failing test case by successive testing till reaching a minimal 
test case that removing any single input from the test case causes the failure to disappear.  

4.1 Definitions and Concepts 

A circumstance is anything that can influence the execution of a program. A circumstance can include 
program code, its input, its code or its environment that causes the program execution. The changeable 
circumstances are those whose changes cause a different program behavior and in the remainder of this 
chapter, “circumstances” refer to changeable circumstances. 

4.1.1 The change that causes a failure 

A set of possible configurations of circumstances denoted by ܴ. Each ݎ  א ܴ determines a specific run of 
a program. To find the cause of a failure we focus on the difference between ݎൈ and some ݎ√ א  ܴ  that 
works: 

Definition 1 (Change) A change ߜ is a mapping ߜ ׷  The set of changes C is the set of all .ܴ ݋ݐ ܴ
mappings from  ܴ  ՜ ܴ . The relevant change between two runs ݎଵ,  ଶݎ   א ߜ is a change ܥ א  such that  ܥ
ଵሻݎ ሺߜ ൌ    ଶݎ

In the remainder of the chapter ߜ stands for the relevant change between two given program runs ݎൈ and 
  .√ݎ

4.1.2 Decomposing Changes 

 A relevant change can be decomposed to a number of elementary changes ߜଵ, … . . ,  ௡. Thisߜ
decomposition of ߜ into individual changes ߜ௜ is program specific; it can be adding a tag in a HTML code 
or changing a line of program code. It is desirable to decompose a change as much as possible to reach 
the atomic decomposition that cannot be decomposed further. 

Definition 2 (Composition of changes) The change composition ° ׷  ܥ  ൈ  ܥ  ՜  is defined as  ܥ 
൫ߜ௜° ߜ௝൯ሺݎሻ ൌ    .ሻሻݎ௝ሺߜ௜ሺߜ

In practice, ° is realized as a union of two change sets ߜ௜. 
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4.1.3 Test Cases and Tests 

Test function takes a program run and tests if it produces failure. This function may return one of the 
following results: 

• The test succeeds (PASS, written here as √) 
• The test has produced the failure (FAIL, written here as ˟ ) 
• The test produced indeterminate results (UNRESOLVED, written here as ?) 

Definition 3 (rtest) The function rtest: ܴ  ՜ ሼ√,ൈ, ? ሽ determines for a program run ݎ  א ܴ whether some 
specific failure occurs ሺൈሻ or not ሺ√ሻ or whether the test is unresolved (?). 

Axiom 4 (Passing and failing run) ݐݏ݁ݐݎሺݎ௜ሻ  ൌ  √ and ݐݏ݁ݐݎሺݎൈሻ ൌൈ hold. 
_ 

 

The ܿൈ is defined as the empty set ܿ√  ൌ  ø which identifies ݎ√ (no changes applied). The set of all 
changes ܿ˟   ൌ ሼߜଵ  , ,  ଶߜ … . . ,   ˟ݎ ௡  ሽ identifiesߜ ൌ ሺ2ߜ °  1ߜ  °…  :ሻ. The subsets of ܿ˟  test cases  √ݎሻሺ  ݊ߜ ° 

Definition 5 (Test case) A subset ܿ  ك   ܿ˟ is called a test case. 

Test cases are related to program runs by means of the test function, which applies the set of changes to 
 .and tests the resulting run √ݎ
 
Definition 6 (test) The function test: 2௖˟  ՜ ൛√, ˟, ? ൟ is defined as follows: Let ܿ  ك   ܿ˟  be a test case 
with ܿ ൌ ሼߜଵ  , ,  ଶߜ … . . , ሺܿሻݐݏ݁ݐ  ௡  ሽ. Thenߜ ൌ …°  ଶߜ °  ଵߜሺሺݐݏ݁ݐݎ   .ሻሻ  √ݎ௡  ሻሺߜ ° 
 
Using Axiom 4, we can deduce the results of ݐݏ݁ݐሺܿ˟ሻ and ݐݏ൫ܿ√൯ : 
 
Corollary 7 (Passing and failing test case) the following holds: 
ሻ׎ሺݐݏ݁ݐ = ൫ܿ√൯ݐݏ݁ݐ ൌ  √  (“passing test case”) and  
…°  ଶߜ °  ଵߜሺሼݐݏ݁ݐ = ሺܿ˟ሻݐݏ݁ݐ ௡  ሽሻߜ °  ൌ  ˟  (“failing test case”). 
 

4.1.4 Minimizing test cases 

The purpose of the simplification of a test case ܿ˟   is minimizing the difference between ܿ√ and ܿ˟  . A test 
case ܿ  ك   ܿ˟ being a minimum means that there is no smaller subset of ܿ˟  that causes the test to fail.  

Definition 8 (Minimal test case) A test case ܿ  ك   ܿ˟  is minimal if  ׊ ܿ ′    ك   ൫ ܿ′ ൯ݐݏ݁ݐ) .  ˟ܿ  ് ൈ)  holds. 

In other words we want to minimize a test case such that removing any change causes the failure to 
disappear which means all circumstances are relevant in producing the failure. This goal is practically 
impossible to achieve as minimizing a test case requires testing 2|஼| െ 1 subsets of c which obviously has 
exponential complexity.  
 
To make the theory come to use we rely on determining an approximation; removing a set of changes 
from the test case is still significant in producing the failure. This property is called n- minimality: 
removing any combination of up to n changes causes the failure to disappear. 
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Definition 9 (n-minimal test case) A test case ܿ  ك   ܿ˟  is n-minimal if  ׊ ܿ ′  ك    ܿ˟  . (หܿ ′ ห  ൏ |ܿ| ฺ
൫ ܿ′ ൯ݐݏ݁ݐ  ് ൈ) holds. 

This means if a failing test case is 3-minimal, removing any combination of 3 changes or less cause the 
test case to pass. Consequently we can define a 1-minimal failing test case as a test case that excluding 
any single change from it cause the test case to pass. 
 
Definition 10 (1-minimal test case) A test case ܿ  ك   ܿ˟  is 1-minimal if  ߜ ׊௜ ك  ሺܿݐݏ݁ݐ . ܿ  െ ሼߜ௜ሽሻ  ് ൈ 
holds. 

The aim of simplification is achieving 1-minimality, which requires an effective algorithm to reduce the 
number of tests are run to minimize the test case. 

4.2 Simplifying the Problem 

Recall to the beginning of this chapter, simplification is a method of turning a detailed problem report into 
a small failing test case in which every circumstance is relevant in producing the failure. Simplification 
helps to determine what details of the problem is relevant and what are not even if we do not have any 
clue about the cause of the failure. For instance taking crash of a plane after some minutes of its take off 
as the problem for simplification, we might take out the passenger seats or coffee machine and find that 
plane still crashes. We might take out engines and see that plane does not move, so engines are relevant to 
the crash.    

Beside the finding failure causes, simplification brings three more advantages: 

1. A simplified test case is easier to communicate.  “The simpler a test case, the less time it takes to 
write it down, to read its description, and to reproduce it. In addition, you know that the 
remaining details are all relevant because the irrelevant details have been taken away”. 
 

2. A simplified test case facilitates debugging. “Typically, a simplified test case means less input 
(and thus smaller program states to examine) and less interaction with the environment (and thus 
shorter program runs to understand)”. 
 

3. Simplified test cases identify duplicate problem reports. “Duplicate problem reports can fill up 
your problem database. Simplified test cases typically subsume several duplicate problem reports 
that differ only in irrelevant details”. 

 

4.2.1 Manual Simplification 
The method is sketched by Kernighan and Pike (1999) and results in a divide-and-conquer process: 

Proceed by binary search. Throw away half the input and see if the output is still wrong;  
if not, go back to the previous state and discard the other half of the input. 

 
Manual simplification requires running a lot of tests; it takes effective time of the programmer for doing 
an unchallenging task. So it is desirable to automate the test case simplification. 
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4.2.2 Automatic Simplification 

To automate the simplification we first need to implement a test function that decides if a subset 
of the test case fails or not. That is the way we distinguish if that part of the test case is relevant 
to the failure or it is not. Second, we need to implement a strategy which realizes the binary 
search by running the test on subset of circumstances. 

To implement the second part we must: 

1. Cut away half of the input and run the test. If test fails, continue the process with the 
remaining half. 

2. Otherwise, go back to the previous state and discard the other half of the input. 

What if none of the halves fail? Here the strategy mentioned earlier comes to use. Instead of 
testing the half of the input, run the test on smaller subset of the input such as its quarter, eighths,   
and sixteenths and so on.  
 

4.3 Delta Debugging  

The delta debugging algorithm is a general approach to simplify the failing test case; ݀݀݉݅݊′ is a 
recursive function in core of the algorithm which gets two arguments: the configuration (input) 
to be simplified (denoted as c′୶) and the granularity n.  

Depending on test result ݀݀݉݅݊′may execute one of these three actions: 

• Invokes itself with a smaller c′୶(“some failing input”)  
• Invokes itself with double granularity (“increase granularity”) 
• Ends the recursion 

݀݀݉݅݊ is a variant approach of the delta debugging which isolates failure causes by narrowing 
down differences (deltas) between runs and guarantees that the returned c′୶ is 1-minimal. Figure 
4.1 demonstrates ݀݀݉݅݊ algorithm in a nutshell. 

The test function test(c) of algorithm decides whether the test outcome is failed, passed or is 
unresolved; base on this result the algorithm decides if to continue with one of the failing halves 
of the input or it should increase the granularity n and split the input to smaller (quarters, eighths 
and so on) subsets [4]. 
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Figure  4.1: The minimizing delta debugging algorithm in a nutshell 

 

4.4 Isolating Failure Causes 

When we have a passing and a failing test case in hand, it is more efficient to use another 
approach to find the failure circumstances which is called isolating. The output of this approach 
is a pair of test cases; one passing test case and one failing test case with the minimal difference 
between them which is actual cause of the failure. 

The process of narrowing down the failure circumstances is a boring, tedious and labor intensive 
work; with automating one can make this process fast and avoid mistakes that can occur during 
manual debugging. The requisites are: 
 

• an automated test that checks whether the failure is still present, 
• a means of narrowing down the difference, and 
• a strategy for proceeding. 

 
 



18 
 

4.4.1 Simplifying versus Isolating 

The output of the simplifying is a minimal test case in which every circumstance is relevant to 
the failure and removing any single circumstance makes the failure to disappear, whereas the 
isolating results in a passing and failing test case with the minimal difference which is the actual 
cause of the failure. 

In isolating like what is done in simplifying, the smaller test case is used as the failing test case 
whenever the test case fails. In addition, the circumstances of failing test case are added to the 
passing test case, which may result to a larger test case. Figure 4.2 shows the difference between 
two approaches. 

 

Figure  4.2: Simplifying versus isolating 

 
 
Briefly we can distinguish the difference of simplifying and isolating with two following 
descriptions: 
 

• Simplification brings the failing test case to a minimal test case where each circumstance 
is relevant in making the failure and removing any single circumstance makes the failure 
disappear. 

• Isolation finds a relevant part of the test case that is relevant in making the failure.  
 

4.4.2 An Isolation Algorithm 

The original ddmin algorithm that described in section 4.4 can be extended to compute a minimal 
difference instead of a minimal test case. This extension is called general delta debugging 
algorithm (dd). dd has the similar worst-case complexity as ddmin. If almost all tests have 
unresolved outcome, the number of tests can be quadratic O(n), where n is cardinal number of 
the initial configuration. If more tests fail or pass, the algorithm becomes more efficient in 
number of tests. The complexity becomes up to logarithmic in the case that all tests have 
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resolved outcome; hence the goal of the dd algorithm is to keep the number of unresolved tests to 
a minimum [3]. Figure 4.3 shows the general delta debugging algorithm in a nutshell. You may 
refer to chapter 13 of [3] for more details about the algorithm. 
 

 
Figure  4.3: The general delta debugging algorithm in a nutshell 
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5 Development 
 

In this chapter the process of the automated debugger development from requirement analysis to 
implementation comes into detail; the requirement of the automated debugger will come first, 
then architecture of testing framework at Cinnober will be described and there will be a study of 
how the automated debugger should be integrated to the testing framework. 

Design of the input, the debugger structure and the output are explained as well. The process of 
applying delta debugging in the model from failure detection to retrieving the actions which 
cause the failure comes after with an example that gives details of implementation as well. 

5.1 Requirements 

The developed automated debugger must fulfill the following functional and non-functional 
requirements: 

Functional requirements: 

• It must generate an execution profile1 from simulation: execution profile is input of the 
model; automated debugger reads and runs the actions of execution profile. 

• It must be able to reproduce the failure: the automated debugger has to reproduce the 
failure before beginning the debugging process. 

• It must reproduce the failure deterministically: the attributes of transactions and their 
sequence when reproducing the failure should be the same as the failing test case. 

• It must retrieve the relevant actions to failure: the causing failure action(s) is the output of 
the model. 

• It must minimize the failing test case till reaching 1-minimality (Section 4.2.4, Definition 
10) 

Non-functional requirements: 

• Automated debugger must not delimit test development: the development of automated 
debugger should be in a way that does not affect the testing development. Automated 
debugger should re-run any automate random test dependent on how it is written. 

• Automated debugger should be as quick as possible 

                                                            
1 Execution profile is the logged actions during the simulation with their attributes; for more information about 
execution profile look at section 5.5.1 
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5.2 Testing Framework 

5.2.1 Testing framework architecture 

The layered architecture of Cinnober’s testing framework is illustrated in figure 5.1. As shown in 
the figure, Cinnober’s testing framework extends the JUnit, standard Java testing framework and 
itself is divided into two sub-frameworks: FIX and EMAPI; these frameworks facilitate 
developers and testers to start FIX and EMAPI sessions with TRADExpress system and perform 
deterministic tests and verifications. The both functional and non-functional tests can be 
automated in the framework. 

 

Figure  5.1: Testing framework architecture 

5.2.2 Random testing framework 

The random testing framework is layered on top of the testing framework; it provides the tools 
for generating random test cases in FIX and EMAPI protocols. The random test framework is 
basically composed of three components:  

• Actor: An actor is the collection of the actions; selection of an action depends on the 
probability that is considered for that action. An action could be any order entry, update 
or cancel.  

• Oracle: An oracle is a mechanism to verify if the output of the system under test is the 
one expected based on the input. 
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• Simulation: Simulation is the core component which controls the simulation process. It 
selects the actor and executes the corresponding action. In addition it controls the 
duration of the simulation which could be based on time duration or simulation steps. 

To simulate an action, the core simulation performs the following steps: 

• The actor that should perform its action is selected by simulation core 
• The actor chooses one action that it can take 
• Oracle that is triggered by the chosen actor, calculates the expected result 
• If the expected result is equal to the actual result the simulation continues, otherwise the 

failure is reported to the simulation core and simulation will be stopped. 

 

5.3 Automated debugger integration 

As the core simulation is responsible to execute the actions, the automated debugger requires 
access to the simulation component for reproducing the actions of the failing test case. This 
implies that the automated debugger should be layered on top of the testing framework and to 
extend the simulation component (Figure 5.1). 

5.4 Design specifications 

In this section the code structure of the automated debugger is presented with the explanation of 
each class, template of the input and how it should be passed to the debugger and what we expect 
as an output comes in detail. In addition, the procedure of debugging a failed test case from 
failure detection to debug is given. 

5.4.1 The input 

The input to the automated debugger is a failing test case. How the input should be fed to the 
automated debugger? One option is to run the failed test case and reproduce the failure. Suppose 
that there are hundred actions in a test case, and the test case fails after 80th action. If we run the 
whole test case it results in more action runs and consequently more debugging time. Therefore, 
the better solution is to run test case up to the action that makes the failure. So we need to keep 
track of the actions that are already run; to do so each action should be logged before execution 
and logging of actions should be stopped as soon as failure occurs.  

The input to the automated debugger is called execution profile; the template of the execution 
profile and how it is created is presented in section 5.5.1. 
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5.4.2 The output 

The output of the automated debugger is the 1-minimal failing test case which contains exact 
actions that cause the failure; the output template is same as the input template. For debug 
purpose, developers can run the output without going through sequence of a lot of actions since 
they have absolute actions that make the failure.  

5.4.3 Structure of the automated debugger 

In this section, first the code structure of the automated debugger is introduced and then 
responsibility of each class is explained. In section 5.6 there is an example with the sequence 
diagram of the automated debugger that makes the understanding of the automated debugger 
procedure more clear. Figure 5.2 illustrates UML class diagram of the automated debugger. The 
diagram shows the relation and multiplicity between classes. TestCaseReproducer and 
DeltaDebugger are core classes of the automated debugger. The role of each class is explained 
below.  

Simulation class 
This class is the main class in random test framework which starts the simulation and has 
following tasks: 

• Control simulation duration 
• Select the actor who should act 
• Get the action that should be executed from the actor 
• Print simulation information 

TestCaseReproducer class 
TestCaseReproducer inherits Simulation class to be able run the simulation, but it does not 
perform the same tasks. This class is responsible to recreate actions read from the execution 
profile. This class basically uses java.lang.reflect package to construct classes and call methods 
that are logged in execution profile. This class is generic and is independent from 
implementation of actors. Consequently, there is no restriction for test developers that they 
should observe to have compatible tests with the model.  
 

DeltaDebugger class 
DeltaDebugger class is the core class of automated debugger which controls the procedure of 
debugging. Hence, it aggregates ActionLogReader, LogParser and TestCaseReproducer for 
purpose of reading execution profile, checking for failure and generating actions respectively. 
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Figure  5.2: UML diagram of delta debugging 

 

Delta debugging algorithm is implemented in this class and the decision of which subset of 
actions should be executed is made by this class. DeltaDebugger instances TestCaseReproducer 
to execute the actions. After execution of each subset, LogParser checks the log files of the 
system under test for any failure and based on the failure of any subset, the next subset is 
selected. 

ActionLogWriter class 
This class is responsible to create the execution profile and implements several methods for 
logging actors and actions and also method attributes. As shown in class diagram, Simulation 
class creates an instance of this class to log the actions. Simulation class calls log method of 
ActionLogWriter after actor and action selection to write the action. In section 5.5.1 the template 
of the execution profile is described.  
 

EventWrapper 
As its name shows, this class encapsulates actor and action. An event comprises of an action and 
an actor that depicted in Figure 5.2.  
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ActionLogReader class 
This class reads the execution profile and creates the list of events. Event list is used by 
TestCaseGenerator to reproduce the test. DeltaDebugger is a mediator between two classes; it 
gets the list of events at the begging of the debugging from ActionLogReader and passes the 
subset of events to TestCaseGenerator to be executed.  
 

LogParser class 
This class receives the name of the servers that should be checked for any failure and parses the 
corresponding log files. It is also possible to configure the parser to search for a list of failures. 

5.5 Procedure of delta debugging 

The flowchart in Figure 5.4 shows the procedure of delta debugging in TRADExpress. The 
procedure starts with running and then logging actions. Immediate after running of tests, servers’ 
log files like ME, CD, TAX and etc are parsed for any failure. If any failure encountered, the 
actions are reproduced and delta debugging is performed on actions to retrieve those are relevant 
to the failure. 
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Figure  5.3: Procedure of delta debugging in TRADExpress 
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5.6 Case study 

In this section a TRADExpress case study will be analyzed from failure detection to test case 
minimization. The process of the delta debugging on test case which were explained in section 
5.5 will be applied step by step on this test case.  
 

5.6.1 Test case 

The figure 5.5 shows a random test case that generates thousand actions. At the beginning of the 
test case random seed and length of simulation time are set respectively.  
 
Actions are weighted and base on the assigned weights actor chooses one of the actions to 
execute. At the end of the test case simulation starts by calling the startSimulation method. 
 

 
 

Figure  5.5: The random test case 

 
 

5.6.2 Logging actions 

Before action execution, it is logged in execution profile. The template of execution profile is 
depicted in section 5.5.1. A part of generated execution profile from the above random test case 
is presented in figure 5.6.  
 
The number at the beginning of execution profile is the random seed. 
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Figure  5.6: A part of execution profile 

 

5.6.3 Performing delta debugging 

When a test case fails, it is time to start delta debugging to find relevant actions to failure. Figure 
5.7 presents sequence diagram of automated debugger. First of all execution profile is read by 
ActionLogReader class and actor and corresponding actions are saved in ActorList and 
ActionList. Both lists are encapsulated in EventList. EventList is read by DeltaDebugger class to 
calculate which subset of actions should be run. 
 
 

 
Figure  5.7: Sequence diagram of delta debugging 

 
The decision is made by ddMin method; ddMin method is the main method in the 
DeltaDebugger that implements the delta debugging algorithm. Then the subList returned by 
ddMin is passed to runSimulation method of TestCaseReproducer class. 
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TestCaseReproducer class runs the actions of subList. DeltaDebugger checks if the subset fails 
or not by calling the isFailure method from LogParser class. Always the failed subList is chosen 
by DeltaDebugger for next calculation. This loop continues till the action list cannot be 
minimized further. The very last list is 1-minimal and is written in the output file as the result of 
the delta debugging. 
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6 Experiment and Evaluation 
 

In this chapter two types of experiments will be presented. First, in section 6.1 the model is 
tested with real failed test cases that have been reported in the test management system of 
Cinnober, to verify the correctness of the model. In section 6.3, artificial failed test cases are 
generated to evaluate the performance of the system. By artificial failed test cases, we will 
evaluate how changes to the different parameters of a failed test case affect the performance of 
the automated debugger model. 

In Section 6.4, it is discussed how the performance of the model can be enhanced by applying 
some test reduction methods. The experiments of section 6.3 are repeated in this section to show 
how well the methods have affected the performance. 

At the end, there is a discussion about what is achieved by developing the automated delta 
debugger and how it satisfies the testing policy of Cinnober AB. 

6.1 Real failed test cases 

To verify the correctness of the model’s functionality, we should have the output (the root cause 
of the failure) in hand to compare it with the automated debugger’s output. The test management 
system was a good source to use the already reported and fixed bugs. The model was tested with 
several reported bugs and the output comparison showed that the model functions correctly and 
returns the minimal test case as the output. Since we do not want to go in detail of every bug, one 
of the failed test cases is presented below. 

Figure 6.1 shows the failed test case; this test case is given as the input to the automated 
debugger model to retrieve the relevant actions that cause the failure. The test case generates 
randomly hundred actions that includes the following five action types: 

• INSERT_ALL_OR_NOTHING: inserts an order with quantity q and price p. The order 
executes only at quantity q. 

• INSERT_ORDER: inserts an order with quantity q and price p. 
• UPDATE_ORDER: randomly selects an order and updates its quantity and price. 
• SWICTH_HALT: it halts or lifts the order book every time it is called. When an order 

book is in halt status, it is not possible to enter, update and cancel order in the order book. 
When the order book is lifted, it returns to the continuous state (section 3.4).  

• MASS_ORDER_CANCEL: cancels all of the orders in the order book. 
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Figure  6.1: The random failed test case 

 
At the end of the debugging, the model returns the following four actions as the output: 
 

• INSERT_ALL_OR_NOTHING  
• SWICTH_HALT  
• SWICTH_HALT  
• MASS_ORDER_CANCEL 

Executing these actions sequentially reproduces the same failure and this is the minimal test case 
that we were expecting.  

6.2 Artificial failed test cases 

We need more tests to verify that the model functions properly under heavy load. Since the real 
failed test cases are not sufficient to evaluate the model concerning the performance, the artificial 
failed test cases are generated. 

To generate the artificial failed test cases, some actions are defined as fake actions that together 
produce a failure when executed sequentially. The source code (matching engine server’s source 
code) is manipulated to throw an exception when the number of executed fake actions reaches to 
a specified number.  Figure 6.2 shows the pseudo code of TestCaseReproducer class that asks the 
matching engine to generate the failure.  
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Figure  6.2: TestCaseProducer asks matching engine to generate an exception 

 

If the executed action is FakeAction (Line 3) then the nrOfExecutedFakeActions is increased by 
one (Line 4). Then it is checked if the nrOfExecutedFakeActions is reached to the specified 
number of actions (Line 5) if so, then a message is sent to the matching engine to aware it about 
the failure generation (Line 6). 

Figure 6.3 shows the pseudo code of matching engine for failure generation. In line 2 if the 
received message is equal to “ThrowException”, it means that the message is received from 
TestCaseReproducer and an exception should be generated (Line 3). 

 

Figure  6.3: Matching engine throws exception upon receiving the message 

 

We can evaluate how changing the number of the relevant failure circumstances 
(NUMBER_OF_ACTIONS in figure 6.2) affects the number of the tests in delta debugging 
algorithm and consequently duration of the debugging in the model.  

6.3 Experiments and Analysis 

The goal of the experiments in this section is to evaluate the effect of the following three 
parameters on the performance of the delta debugger model: 
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1. Size of the failing test case 
2. Number of the failure circumstances 
3. The location of the failure circumstances 

6.3.1 Size of the failing test case 

Table 6.1 shows the effect of the test case size on the performance of the delta debugger model. 
The experiments are categorized to different groups. In each group the size of the test cases are 
changed from 10 to 40 actions with 10 intervals and the number of failure circumstances 
remained constant. It seems the size of the input is in a direct relation with the number of the 
tests in every group, since with the increase of the first variable the other is raised as well. This is 
obvious since more actions mean more subsets and consequently more number of tests. 

Group Number of 
Actions 

Number of 
failure-inducing 

actions 

Index of failure-inducing 
actions 

Number 
of tests 

 
1 

10 3 3, 6, 9 34 
20 3 6, 12, 18 44 
30 3 10, 20, 30 56 
40 3 13, 26, 39 63 

 
2 
 

10 4 2, 4, 6, 8 43 
20 4 5, 10, 15, 20 66 
30 4 7, 14, 21, 28 78 
40 4 10, 20, 30, 40 88 

 
3 
 

10 5 2, 4, 6, 8, 10 47 
20 5 4, 8, 12, 16, 20 77 
30 5 6, 12, 18, 24, 30 95 
40 5 8, 16, 24, 32, 40 105 
Table  6.1: Effect of the test case size on the performance 

 

6.3.2 Number of the failure circumstances 

In table 6.2 the test cases are grouped with variable number of the failure circumstances and 
fixed size of the test case. In every group the number of tests is increased by raising the number 
of the failure circumstances. The more the number of failure circumstances, the more tests 
should be run. 

 
Group 

Number of 
Actions 

Number of 
failure 

circumstances 

Index of failure 
circumstances 

Number 
of tests 

 
1 

10 3 3, 6, 9 34 
10 4 2, 4, 6, 8 43 
10 5 2, 4, 6, 8, 10 47 

 
2 

20 3 6, 12, 18 44 
20 4 5, 10, 15, 20 66 



34 
 

 20 5 4, 8, 12, 16, 20 77 
 
3 
 

30 3 10, 20, 30 56 
30 4 7, 14, 21, 28 78 
30 5 6, 12, 18, 24, 30 95 

 
4 
 

40 3 13, 26, 39 63 
40 4 10, 20, 30, 40 88 
40 5 8, 16, 24, 32, 40 105 

5 100 6 16, 32, 48, 64, 80, 96 173 
6 200 6 33, 66, 99, 132, 165, 198 214 
7 300 6 50, 100, 150, 200, 250, 300 251 

Table  6.2: Effect of the number of the failure circumstances 

 

6.3.3 The location of the failure circumstances 

Table 6.3 pictures the effect of the failure location on number of the tests that should be taken by 
the delta debugger model. Subsets column shows how delta debugging splits the actions. Each 
number in the column presents an action: the number in bold in each test case shows the failing 
action which cause the whole test case to fail. As shown in the delta debugging algorithm (Figure 
4.1), the division of the actions starts with two subsets and the algorithm continues with the 
failing subset (or a complement of a subset). The shaded sub-columns show the subsets that are 
executed after each grouping. 
 

Test Case Subsets Number of the tests 

1 
1 2 3 4 5 6 7 8 

3 1 2 3 4 
1 2 

2 1 2 3 4 5 6 7 8 
4 1 2 3 4 

1 2 

3 
1 2 3 4 5 6 7 8 

4 1 2 3 4 
3 - 

4 
1 2 3 4 5 6 7 8 

5 1 2 3 4 
3 4 

5 
1 2 3 4 5 6 7 8 

4 5 6 7 8 
5 - 

6 
1 2 3 4 5 6 7 8 

5 5 6 7 8 
5 6 

7 
1 2 3 4 5 6 7 8 

5 5 6 7 8 
7 - 
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8 
1 2 3 4 5 6 7 8 

6 5 6 7 8 
7 8 

Table  6.3: Effect of failure location on number of tests 

 
The first four test cases present the failure in the first subset of the test case, and the other test 
cases (4 to 8) present the failure in the second subset of the test case. Comparing first four test 
cases shows an increase in the number of the tests by changing the location of the failure from 
the very beginning of the subset to the end of the subset. The same thing happens in the second 
failing subset (test numbers 4 to 8).  
 
If you compare the number of the tests between test numbers 1 and 4, 2 and 5 and so on, you see 
one test difference between them. This difference is the result of testing the first subset of the test 
case when the failure occurs in the second subset of the test case. 
 
To sum up, it is proved that the delta debugging performance benefits from the failure that 
occurs early in the test case. This failure includes both the location of the failure and earlier 
failure in the subsets. 
 

6.4 Performance Issues 

The performance of the delta debugger model is evaluated based on the number of the executed 
tests on the failed test case to isolate the relevant actions that are the root cause of the failure.  
 
The size of the test cases in the experiments of section 6.3.1 and 6.3.2 are not too large. 
Sometimes, the size of a test case can reach to more than several thousand actions. Therefore, 
appropriate approaches should be employed to decrease the number of the tests. The reason that 
the performance is evaluated based on the number of the tests is that, different transactions take 
different times to be completed; and also execution environment and system load affects the 
duration of the execution.  
 
The following approaches can enhance the performance of the delta debugging [5]: 
 

1. Skip the already passed set of actions 
2. Use the monotony property: If a set of transactions pass the test, all subsets of that set will 

pass the test as well. 
3. Reduce to the first failing subset if there are multiple dependent failure causes 

As said before, we are interested in failing sets and there is no benefit in running set of actions 
that are already passed. Furthermore, by continuing with the first failing set we increase the 
probability of removing upcoming interrelated failures in the test case. 
 
These methods dramatically increase the performance of the delta debugging. The experiments 
that are illustrated in table 6.2 are after applying the optimizations. Table 6.4 shows the result of 
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the same experiments before applying the optimizations. Comparing table 6.2 and 6.4 shows 
huge difference between the number of tests before and after optimization. 
 
When the size of the failed test case is too huge even above optimizations cannot help to reduce 
the number of the tests. In this case, one can specify a threshold on the debugging duration or the 
number of tests it should execute; this strategy at least shortens the size of the test case and eases 
the manual debugging.  
 

Row Number of 
Actions 

Number of 
failure-inducing 

actions 

Index of failure-inducing 
actions 

Number 
of tests 

1 
10 3 3, 6, 9 55 
10 4 2, 4, 6, 8 72 
10 5 2, 4, 6, 8, 10 77 

2 

20 3 6, 12, 18 83 
20 4 5, 10, 15, 20 121 
20 5 4, 8, 12, 16, 20 144 
20 6 3, 6, 9, 12, 15, 18 172 

3 

30 3 10, 20, 30 95 
30 4 7, 14, 21, 28 144 
30 5 6, 12, 18, 24, 30 179 
30 6 5, 10, 15, 20, 25, 30 225 

4 

40 3 13, 26, 39 110 
40 4 10, 20, 30, 40 166 
40 5 8, 16, 24, 32, 40 212 
40 6 6, 12, 18, 24, 30, 36 253 

5 100 6 16, 32, 48, 64, 80, 96 359 
6 200 6 33, 66, 99, 132, 165, 198 447 
7 300 6 50, 100, 150, 200, 250, 300 536 

Table  6.4: Experiments result before optimization 
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7 Discussion and further work 
 
7.1 Discussion 

Having presented the results of my experiments, it is valuable to assess its degree of reliability 
and applicability through analyzing its status in relevant theories and practice. 

Through relevant literature reviews, it is concluded that delta debugging is the only method for 
minimizing a failing test case and other proposed methods are built on top of this algorithm. In 
fact, delta debugging can be applied on different inputs such as code, threads, variables and other 
system components.  

Concerning the current status of the model, as it was mentioned earlier, delta debugger model is 
designed and developed for random testing framework of TRADExpress system in Cinnober 
Company. Since this system is a platform for all the customer projects in Cinnober Company, 
delta debugger model can be utilized in all projects with appropriate customization to be adopted 
with the specific trading strategies.  

Another possible applicability of this model in Cinnober Company could be in regular JUnit 
testing. In some cases I have been asked if the model can debug a failure in the project, which is 
not produced in random testing and is just a typical JUnit test in the project? I should argue that 
the problem of debugging such test cases with delta debugger model is generating execution 
profile, which is the main requirement for reproducing failure. Since execution profile is 
generated by simulation component - the core component of random testing framework- we 
should think about another approach for logging transactions that would not introduce new, 
significant changes in the model. 
 
One suggestion could be a component that lies between the sender and receiver servers in order 
to log the message. This new component would cause a delay in action execution that affects the 
system performance, but not its functionality. Generalizing the model could be the future work 
towards launching the model into practice.  
 
There is an important limitation with using delta debugging model that is worth to be mentioned. 
One property of delta debugging that can prolong the debugging process and spoils automation 
process is its limitation in finding multi-independent errors. Delta debugging algorithm can find 
one error per run. In fact, for further failure findings, first, identified errors should be removed 
and then model should continue with new test case. Assume that testing test case C fails because 
of two independent changes ܥԢଵ and ܥԢଶ. After first run ܥԢଵ is found by delta debugger model; 
then model should continue with ܥ ൌ   .Ԣଵܥ / ܥ 
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Another limitation that I faced in this project was the fact that it is not possible to estimate the 
time saving possibility and profitability of this model compared to manual debugging. 
In fact, it is impossible to measure exactly how much time for a typical test case is saved using 
automated debugger model, since evaluations in previous chapter proved that time of debugging 
depends on several factors. However, through a quick assessment performed by an expert, it is 
possible to estimate the complication of the failure, its urgency for bug fixing and approximate 
time needed. 
 
In general, it is always beneficial for financial companies with complicated systems like 
Cinnober to have an automated system for dealing with repetitive tasks. We cannot 
underestimate the fact that when the failure is not too complicated, the expert developers with 
good knowledge about the code can find the root cause of the failure faster than the automated 
debugger model. However, when the scale of system is considerably large, project deadline is 
close, human resource is not sufficient and failure is estimated to be highly complicated, then 
delta debugging system is one of the most practical solutions for our case. Since it reduces a 
considerable amount of developers’ effort while puts the whole time-consuming, tiresome, error-
prone debugging task on computers’ capability. 
 
7.2 Further work 

As mentioned earlier, debugging large size inputs are too time-consuming even by delta 
debugger model. The future work will focus on speeding up the model. This performance 
enhancement requires a statistical investigation on the structure of the input to find out which 
combination of transactions has higher probability to fail. So, subsets with higher probability are 
tested first to increase the probability of getting a failing subset. 
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