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Abstract

In the context of compilers, branch probability prediction deals with estimat-
ing the probability of a branch to be taken in a program. In the absence of
profiling information, compilers rely on statically estimated branch probabili-
ties, and state of the art branch probability predictors are based on heuristics.
Recent machine learning approaches learn directly from source code using
natural language processing algorithms. A representation learning word em-
bedding algorithm is built and evaluated to predict branch probabilities on
LLVM’s intermediate representation (IR) language. The predictor is trained
and tested on SPEC’s CPU 2006 benchmark and compared to state-of-the art
branch probability heuristics. The predictor obtains a better miss rate and ac-
curacy in branch prediction than all the the evaluated heuristics, but produces
and average null performance speedup over LLVM’s branch predictor on the
benchmark. This investigation shows that it is possible to predict branch prob-
abilities using representation learning, but more effort must be put in obtaining
a predictor with practical advantages over the heuristics.

Keywords — compiler, compiler optimization, branch prediction, machine
learning, representation learning, LLVM.



Sammanfattning

Med avseende pa kompilatorer, handlar branch probability prediction om att
uppskatta sannolikheten att en viss forgrening kommer tas i ett program. Med
avsaknad av profileringsinformation forlitar sig kompilatorer pa statiskt upp-
skattade branch probabilities och de framsta branch probability predictors dr
baserade pa heuristiker. Den senaste maskininldrningsalgoritmerna lir sig di-
rekt frén killkod genom algoritmer for natural language processing. En algo-
ritm baserad pé representation learning word embedding byggs och utvirderas
for branch probabilities prediction pd LLVM’s intermediate language (IR).
Forutsdgaren ér trinad och testad pd SPEC’s CPU 2006 riktmirke och jam-
ford med de framsta branch probability heuristikerna. Forutsdgaren erhaller en
bittre frekvens av missar och triffsdkerhet i sin branch prediction har jamforts
med alla utvirderade heuristiker, men producerar i genomsnitt ingen prestan-
daforbittring jamfort med LLVM’s branch predictor pé riktmérket. Den hir
undersokningen visar att det d&r mojligt att forutsdga branch prediction proba-
bilities med anvindande av representation learning, men att det behover satsas
mer pé att i tag pé en forutsdgare som har praktiska dvertag gentemot heu-
ristiken.

Nyckelord — kompilator, kompilatoroptimering, branch prediction, ma-
skininldrning, representation learning, LLVM.
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Chapter 1

Introduction

Compilers [|1]] are programs whose main task is to translate a program written
in a high-level language into an assembly one for a particular instruction set
architecture. Given the many source and destination languages, compilers split
the translation process into two parts: first the source language is converted
into an intermediate representation (IR) language, then the IR is transformed
into the target assembly language. The former task is performed by the so-
called Frontend while the latter is accomplished by the Backend. The common
structure of a compiler is shown in Figure[I.1] Since the IR acts as an interface
between frontends and backends, they can be developed independently.

The other goal of compilers is code optimization. Optimizations are in-
troduced as transformations of the code that change its structure but not its
semantic. The optimizations can target, for example, execution speed, power
consumption, or code size. Optimizations can be of two types: machine-
dependent and machine-independent optimizations. The former are handled
by the backend and exploit specific features of the target architecture, while
the latter are performed at the IR level by the so-called middle-end and are
target independent.

Crucial to most optimization are the parts of the code that gets executed
the most, called hotspots. Since they represent a great share of the execution
time, their optimization has a greater impact than optimizing sequences of
instructions executed less frequently. These regions are often found in loops,
or in procedures that are recurrently performed. It is therefore important to
identify hotspots before the optimization takes place. To identify the hotspots
one has to predict the control flow of a program, that is the sequence in which
instruction are executed while running. The task is not trivial because the
order of the instruction in a program is not the same as the one while running.
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Figure 1.1: Common structure of a Compiler. Each of the three sections is in
charge of a translation between two languages.

All imperative languages have built-in constructs to change the control
flow such as : if-else statements, for loops, and gotos. These con-
structs, when transformed into lower-level languages, are represented by the
so called branch instructions (or just branches) that select at runtime the next
instruction to perform. Usually branches have only two possible successor
instructions (or directions), called rarget and fall-through or taken and not-
taken. Predicting the most taken direction of a branch without executing the
code is called static branch prediction, while assigning a probability to each
direction is called static branch probability prediction. It has been shown that
the execution frequency of regions of code (hence hotspots identification) and
branch probabilities are closely related: given one the other can be derived [90,
69]. Therefore a precise prediction of branch probabilities entails an accurate
starting point for optimization.

Predicting branches was originally concerned with reducing misprediction
in pipeline processors [54]. First the work by Wall [91]] and then the one of
Fisher and Freudenberger [29]], proved that programs’ branches have regular
behaviour and it is worthwhile to predict them statically (that is without ex-
ecuting the code). In the 1990s heuristics [4, [96] 90] were developed to per-
form static branch probability prediction. The probability values were chosen
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by averaging many profiled programs’ behaviours. Their results were already
promising obtaining a dynamic miss rate of around 30% against a theoretical
limit of around 10% on the tested programs. At the turn of the century few ma-
chine learning methods were also employed for branch prediction [[14} 12]. In
these approaches hand-crafted features were extracted both from the program
structure and the instructions, next a machine learning algorithm classifies au-
tomatically the branch as taken or not taken. These methods result in better
performance than the heuristics developed before. The downside is that these
methods do not predict branch probabilities but only the most taken direction.
These new techniques are of no use for current compilers such as LLVM [45]
or GCC [85] which use branch probabilities in their internal representation to
perform optimization. For this reason, their static estimation still relies on the
older heuristics.

In the last two decades research attention has shifted from static branch
prediction to dynamic branch prediction [59, 43| 75], whose goal is predict-
ing at runtime the direction taken by a branch. Dynamic branch prediction
is very important to reduce performance penalties with speculative execution
in CPUs [37]. Recently applications of machine learning have spawned in
tasks concerning source code inputs [93, |3], examples are: power consump-
tion estimation of programs [56], optimization selection in compilers [23},30],
bug identification and text to source code translation [3[]. In the literature, a
common way of dealing with source code inputs is using natural language
processing techniques [3]] both for representing it and for prediciton methods.

Problem statement Despite the various accomplishments of Machine Learn-
ing in various compiler-related areas, there is no record of its application in
branch probability predictor and its effect on compiler optimization.

Solution outline Branch prediction need to be done at the IR level so that
the various optimizations can harness branch information. Taking inspiration
from recent work in [56, |23, |30]] the branches will be predicted using neural
networks [[10}|60] with features extracted automatically from the IR using Rep-
resentation Learning [32]]. Representation Learning builds a representation of
the input without any human-designed feature extraction. The goal is to let the
algorithm choose which combination of features is best for the task and avoid
loss of information due to human design. This is motivated by its successful
application in other compiler related task [52, |56, [23]].
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1.1 Research Question

Branch probabilities are often the starting point for program optimization in
compilers. The research community has not yet explored the potential of cur-
rent machine learning approaches leaving possible improvements unexploited.
The main question this project tries to answer is: what is the benefit of rep-
resentation learning based static branch probability predictor compared to
previous approaches?

Hypothesis The hypothesis is that a representation learning algorithm per-
forms better than current heuristic, both as a branch predictor and as a branch
probability predictor.

Purpose An accurate prediction of branching probabilities is useful for per-
forming various compiler optimizations [1, 84] and probabilistic dataflow anal-
ysis [68]]. Current production compiler use simple heuristic which can be im-
proved. The purpose of the research question is to assess the benefit of rep-
resentation learning and machine learning for branch probability prediction
compared to state-of-the-art heuristics. Another target for this project are ag-
gressive compilers such as UNISON [50] that embeds branch probabilities in
its objective function for register allocation and instruction scheduling. Wrong
prediction of branch probabilities might guide the optimization into a subop-
timal solution.

Goal The goal is to devise a machine learning algorithm to perform static
branch probability prediction given the IR of a program.

Benefits, Ethics and Sustainability Since static branch prediction is the ba-
sis for many optimization, the possible benefits are numerous. A compiler
might use the information to optimize a program for speed or for energy con-
sumption. The cost for performing branch prediction once during compiling
is amortized during the execution of the program, even more if the program is
distributed across many devices.

Both the execution and the result of the project do not pose any ethical problem.
In a society ever so reliant and pervade by computer systems, their program’s
optimization is crucial both for speed and for energy consumption [5]]. These
arguments motivate the research for a social, economical and environmental
sustainability.
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Method and Methodology The research question will be addressed using a
quantitative method. The problem will be analyzed on the intermediate repre-
sentation language of the LLVM compiler infrastructure [45]. A data-driven
branch predictor will be constructed from branching information collected
from SPEC CPU 2006 Benchmark [38]], a benchmark widely used in previous
branch prediction research [90, 4, |12]. The evaluation of the branch predictor
and its comparison with the state-of-the-art heuristics follows an experimen-
tal method: the accuracy of the predictors and their effect on performance are
collected and analyzed.

1.2 Contributions
This thesis gives the following contributions:

* An analysis of the branch predictor implemented in LLVM and its im-
plication on performance;

* Animplementation of Ball and Larus [4] and Wu and Larus [96] heuris-
tics into LLVM’s framework;

* A comparison between the above heuristics with LLVM’s branch pre-
dictor;

* A machine learning model to predict branch probabilities at LLVM’s IR
level of a compiler.

1.3 Document Outline

Chapter 2] gives an introduction to the concepts used in the dissertation along
with the relevant literature study for the subject. Chapter [3|performs an analy-
sis of the current branch predictor in LLVM and compares it with state-of-the-
art heuristics. Chapter 4] continues with the description of the branch proba-
bility predictor developed in this thesis, it also highlights the design decisions,
the dataset used, and the evaluation methods. The results are presented in
Chapter [5] and discussed in Chapter [6] outlining the conclusion of the project
and the future work.



Chapter 2

Background

This chapter introduces the concepts necessary to understand the content of the
thesis. It begins presenting the Control Flow Graph in Section[2.1] its relation
with branch probabilities, and hotspot identification in programs. Section[2.2]
introduces Machine Learning, its core concepts and applications to compiler
technologies. The Chapter continues with a display of the relevant literature
in Section [2.3] Finally Sections [2.5] 2.4] and [2.6| present necessary machine
learning models used later in the dissertation.

2.1 Control Flow Graph

Imperative programming languages are equipped with conditional constructs

such as for loops and if-else statements. At runtime, these statements

select which instruction sequence to run based on the outcome of binary con-

dition. In a program’s execution, the sequence of instructions performed is

called the control flow of a program and depends on the input of the program.

Conditional constructs are represented at a lower-level language through branch
instructions (often just branches). Similarly to conditional constructs, branches
determine the next instruction during an execution. There exists two types of
branches: conditional and unconditional. Conditional branches establish the

next instruction according to a boolean condition, while unconditional do not.

An example of a conditional branch is given by the instruction breq (‘branch

on equal’) in the following snippet of pseudo-assembly.

sub a, b, 3 # a=>b - 3
breqg ¢, 0 , %target # c == 0



CHAPTER 2. BACKGROUND 7

add a, a, c #a=a + c
Starget:
add a, a, 1 #a=a + 1

The instruction checks if c is equal to O. If the test is false the execution con-
tinues normally with the succeeding instruction (called fall-through or branch
not-taken), otherwise the execution is resumed at another program point de-
scribed by the %$1abe1(called rarget or branch taken).

On one hand, branches are what makes programming languages Turing
complete [|11]], on the other hand, they complicate some compiler tasks such as
register allocation, instruction scheduling and, optimization, as the compiled
program must run properly no matter which order of instruction is executed []1,
84]. To solve these problem compilers represent procedures and programs as
Control Flow Graphs (CFGs), a structure that expresses all possible program’s
control flows. The formal definition of the CFG starts from the concept of basic
block.

Definition 2.1 A basic block is a maximal set of adjacent instructions that are
always executed in sequence.

The successors of a basic block bb; are the basic blocks that can be executed
immediately after bb;, and are represented by succ(bb;). Successors form a
binary relation over the set B of all basic blocks in a program: let - C B x
B denote in infix notation the following relation bb; — bb;, <= bb; €
succ(bb;).

Definition 2.2 The Control Flow Graph (CFG)is a directed graph G = (B, E)
whose vertices BB is the set of basic blocks bb,, bby, . .., bby and an edge e; ; =
(bb;, bb;) € & iff bb; — bb;. Moreover there exist a node bb, € B which is
called the entry node.

In other words, the CFG is the graph that represents the successor relation
over the basic blocks of a program. The CFG has an initial node and (possibly
multiples) exiting nodes: the initial node is the entry point of the procedure
while exiting nodes are those which contain the exit point of the procedure. An
example of a CFG is shown in Figure [2.1] Here the entry node is highlighted
in green, while the exiting node is red. In yellow is highlighted a basic block
terminating with a conditional instruction, and therefore is has two successor
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basic blocks. The CFG is an essential data structure in compilers as it is used
to perform static analysis, code transformation, and code optimization [[70, |1,
34].

void function () { c=a+b
c =a + b; a ++
a ++;
while(c < N){ c < N
\ a ’ P c=c¢c-b
, a ++
print (c) ;
return; print (C)
} return

Figure 2.1: Correspondence between source code (on the left) and its Control
Flow Graph (on the right). The green basic block is the entry node of the
CFG, while the red one is the exit node. In yellow a basic block containing a
conditional branch instruction is highlighted.

Many optimization passes such as code inlining and block reordering need
information about the most executed blocks and most taken direction of branches.
These two information are tightly coupled as later explained in Subsection
[2.1.1] They can be obtained into two ways: via profiling the program, which
requires running it, or estimate it statically without running it.

The former is usually believed to be expensive to carry out, and therefore esti-
mation methods are more often used. If the latter is an accurate approximation
of the former, it is possible to avoid profiling entirely.

Static Branch Prediction (SBP) refers to the prediction of the most taken
direction of a branch, while static branch probability prediction (SBPP) es-
timates the probability of each possible successor of a basic block. They are
called “static” because the predictions are performed without running the pro-
gram. From a SBPP is possible to obtain a SBP by predicting the successor
with the highest probability to be the most taken direction. Referring to Figure
2.1 and the yellow basic block, a SBPP estimates the quantities p and 1 — p,
while a SBP is concerned in predicting whether p > 1 — p or not. The miss
rate is a widely used metric for evaluating branch predictors. It is defined as
the percentage of the execution of branches that are mispredicted by the SBP.
To obtain a lower bound on the miss rate for a given program and input, it is
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possible to use the profile of the program as a branch predictor on the same
input. This is called the Perfect Branch Predictor (PBP) [4]. Subsections[2.3.1]
and[2.3.2] presents the literature review for SBP and SBPP.

2.1.1 CFG as Markov Chains

Markov Chains [60, 34] are a stochastic model used for describing sequences
statistically. They are often used to model walks in a directed graph. In the
context of compilers, they can be used to model the CFG and branch probabil-
ities altogether. With this representation, it is possible to compute the average
execution frequency of each basic block.

Discrete-time Markov Chains (DTMC) are defined as a series of random
variables X = {X,},—; _r that obey the Markov property. The Markov prop-
erty postulates that the distribution of every random variable depends only on
the outcome of the previous one, as described in the following equation:

p(Xi| X1:i-1) = p(Xi| Xi1) (2.1)

Where the notation X;.;, with ¢ < j, means all the random variables from
index ¢ to index 7 included.

Markov Chains that assume that the conditional probability p(X;|X;_1)
does not vary on the index ¢ are called homogeneous. If each variable can take a
finite number of values X; € S = {51, ..., Sy} and homogeneity is assumed,
itis possible to represent a Markov Chain through its state space. This involves
representing a graph whose nodes are the elements of S and whose edges occur
between two nodes ¢ — j if and only if p(X; = j|X;_1 = ¢) > 0. Each edge is
also labelled with their corresponding probability p; ; = p(X; = j|Xi—1 = 1),
referred as the transition probability between the two states. An example is
shown in Figure 2.2] The graph can be furthermore described by a square
matrix, the transition matrix, whose entries are 7'{i, j} = p; ;. A realization
of the sequence X of random variables represents a walk in this graph.

Relation to CFG Control Flow Graphs are easily mapped into Markov Chains:
each state represents a basic block (S = B), and an execution of a program is a
sequence of basic blocks. The transition probability p; ; between two states is
no more than the branch probability between two basic blocks. If we assume
that the Markov property of Equation 2.1 holds then it is possible to calculate
the average number of times each state is visited, or equivalently the percent-
age of “time” spent in each basic block. Given the transition matrix, the vector



10 CHAPTER 2. BACKGROUND
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Figure 2.2: Example of a state space of a Markov Chain. An example of a
walk in the graph is the sequence X = [S1, S5, S4, Sg, S3, 6, S7].

of the frequency in each state w is given by solving the following equation:

(T-D7-w=0 (2.2)

Hence the vector of frequencies is the eigenvector of the matrix (T — I)Z.
Equation [2.2)is well defined when the chain is ergodic: if from any state it is
possible to reach any other state. Control flow graphs are not ergodic because
terminating basic blocks do not have any successors, but can be made such by:
removing unreachable basic block, and by artificially adding edges from each
terminating basic block to the entry one.

Given branch probabilities, it is possible to identify which basic blocks are
the most executed in a procedure, hence hotspot identification. Wagner et al.
[90] computes the frequency of each state using an iterative approximation of
equation while also suggesting how this approach can also be applied to
the function call graph [84]. The result is a estimate of how many times a
function gets called, another useful information for compiler optimization.

2.2 Machine Learning

The following paragraphs introduce the area of machine learning and its key
concept. After the related work presented in Section Sections[2.4)and
introduce the models used in the rest of the thesis.

Machine Learning [ 10, 60] is a set of models and algorithms to automati-
cally identify and exploit patterns in data. The goal of every machine learning
technique is at its core an optimization problem and can be summed up as fol-
lows: from a dataset D, called training set, learn the parameters 6 of a family



CHAPTER 2. BACKGROUND 11

of functions f(#, -) such that the value of another function, called the loss L,
is minimized:

0" = argmin L(f(0,-), D) (2.3)
0

The loss function measures how well the function f(0, ) fits the data. The
loss can arise statistically or can be created at will. The parameters 6* can
be found exactly or can be iteratively searched. The function f(0*,-) is the
learned model and it is evaluated on another dataset called the test set. The
test set is used to check if the model has learned to perform the correct task on
another dataset other than the training one.

Applications Even though Machine Learning dates back to the early 1940’s
[S3]], only in the last decade new sophisticated models were devised due to two
factors: the computational capabilities of computers and the high quantity of
available data [[60]. Among the latest developments in machine learning is
Deep Learning [32], a set of techniques that brought significant improvements
in fields such as computer vision [46] and natural language processing [67].
Machine learning is used in many contexts, for example in physics [36], in
healthcare [28]], music composition [62] and many more.

For code and compilers Recently, machine learning techniques have found
their use in compilers, where they are used mainly for two tasks: estimating
statically dynamic features or performing optimization of the code. Examples
of the first are Ithemal [56] which is able to predict a basic block’s through-
put in cycles, or CPU’s power consumption [9]. For the task of optimization,
machine learning methods have been used for choosing which optimization to
perform [[18]], or for choosing the level of parallelism of a piece of code [51].
The review by Wang and O’Boyle [93] presents the areas and the techniques
used in the literature for combining machine learning for compiler optimiza-
tion.

Other uses of machine learning techniques on program sources are related
to software engineering tasks, such as: classifying programs [76]], identifying
test cases [[17], or finding program inputs that can undermine the program’s
security. For these tasks techniques similar or inspired by natural language
processing are used to extract features [3]. Other types of representation take
advantage of Graph Neural Networks [97]] as described by Allamains et al. [2]
or as used in the work of Shi er al. [81]].
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2.3 Related Work

Subsection[2.3.T|presents the heuristic approaches in branch prediction, while
subsection [2.3.2] shows the use of machine learning for the same problem.
Finally subsection [2.3.3] presents the techniques currently used in compilers
for branch prediction.

2.3.1 Heuristics

The early work focused mostly on estimating program execution time by using
branch probability. In the work of Ramamoorthy [[69]] each function is associ-
ated with a mean execution time, and the flow of the program is represented as
a directed graph whose arcs are labeled with the probability of switching from
a function to another. From this graph, it is possible to compute mean and
variance of a program’s execution time as shown by the paper of Ramamoor-
thy itself. His main contribution is in modeling the program flow as a Markov
Model. In the paper, there is no mention of ways in which the probability of
each branch is computed other than profiling. The same objective is shared by
the work of Sarknar [73]]. In his work he presents a statistical framework for
determining the mean and variance of a program execution by using profiling
information. His framework is based on the interval structure [[1]] of the CFG
instead of relying on a Markov Model.

The most prolific years for static branch prediction were perhaps the 1990s.
The possibility of predicting statically branches was inquired by Fisher and
Freudenberger [29], whose investigation dealt with finding how predictable are
branches given a previous execution of a program. They showed that across
executions, branches take the same direction most of the time. Wall [91]] ad-
dressed two crucial questions for program profiling: how reliable is the in-
formation taken from one profile run to other runs, and how good can a static
estimator be. He looked at various profiled metrics, among which basic blocks
frequency. He compared some simple heuristics with the profile information.
He concluded that is worthwhile to use profile information for performing opti-
mization and other types of analysis, and that the static predictors he proposed
were substantially inferior.

The first heuristics were proposed by Ball and Larus [4]. They proposed
two simple heuristics for predicting the most common branch from static fea-
tures: one works on branches involved in loops, and the other work on non-
loops branches [1]]. The heuristic of non-loop branches is a combination of 7
other rules that analyze some static features of the branch. The 7 heuristics are
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tested one after the other, and only the first one that applies is considered. Each
branch is assigned with a probability estimated from common probabilities in
profiling data. The algorithms were tested on MIPS assembly code.

Wagner et al. [90] developed another heuristic that assigns a probability to
each branch. Their approach worked both at the inter- and intra-procedural
level. Their analysis uses both information from a simplified Abstract Syntax
Tree and Control Flow Graph for each function as input. They treat differently
loops prediction and branch prediction. They used the Markov model to iden-
tify the most executed parts of code and estimate function frequency. In their
analysis, they conclude that their branch prediction does not improve much the
loop prediction of Ball and Larus [4]. Like Ball and Larus’s heuristic, breaches
are assigned with hard-coded branch probabilities.

Wu and Larus [96]] in the same year proposed an improvement on Ball’s and
Larus’s work [4] by incorporating Dempster-Shafer theory [98] to combine the
results of the different heuristics. Their results are significantly better than the
original one.

Wong [95] developed heuristics for predicting statically branches at the source
level. He propose some heuristics and compare them with the perfect static
branch predictor. They obtained a miss rate of around 20% compared with
the 10% for the PBP. Their conclusion is that semantic information is very
valuable for static branch predictor. Finally, Sheikh et al. [[77] propose a mixed
hardware and software approach to reduce branch misprediction to avoid.

2.3.2 Machine Learning Approaches

In 1995 Calder et al. [13|14] applied neural networks to perform branch pre-
diction. They extract statically a set of features from the assembly code to
feed into the network. The downside of their approach is that it does not as-
sign branch probabilities, but it classifies the brancha s taken or not taken. The
approach of Calder et al. has influenced other works: Liu ez al. [48] perform
branch prediction for estimating the cost of reordering basic block for certain
substructures of the CFG. In 2002 Sherwood et al. [[80] tried to automatically
classify program’s behavior by clustering the distribution of time spent in each
basic block, called Basic Block Vectors [79]. They show how it is possible to
identify during the execution of a program similar program behavior intervals.
They argue that these intervals are useful for program simulation in computer
architectures, especially in finding simulation points that represent the behav-
ior of the program as a whole. They show how to find these points and evaluate
their accuracy, later implemented in the SimPoint program [|64].
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Veerle et al. [26] extended the work of Ball and Larus [4] proposing a mixed
approach by including the work of Calder [14] to obtain a better branch pre-
dictor. They concluded that this hybrid approach is beneficial though limited
by the assembly language used in the dissertation.

Recently Buse et al. [[12]] developed a very accurate model for predicting
path frequency using logistic regression in Java programs. They set up the
problem as classifying paths in a method as high or low frequent. Their work
exploits source level features and the structure of object-oriented programming
languages. They also used path frequency for creating a branch predictor, and
compare it with Ball’s and Larus’s, obtaining better results in almost all test
benches considered. The downside is that it uses object-oriented source level
features, that are not easily applicable to other languages. A comparison be-
tween the result of the different approaches but Buse’s one appears in [[14]] and
it is reported in Table 2.1}

Method Miss Rate (%)
Backward Taken, Forward Not Taken 34
Ball’s and Larus’ [4]] 26
Wu’s and Larus’ with Dempster-Shafer theory [96]] 25
Calder’s et al. [|14]] 20
Perfect branch predictor 8

Table 2.1: Comparison of the different branch prediction schemes in terms of
branch miss rate on different benchmarks. The lower the score the better. The
results come from [/14].

Another related work is that of Tetzlaff and Glesner [89]. Their goal was

not to predict branches but the number of iterations of a loop. They employed
decision trees [60] fed with more than 100 static features of the loop.
The use of machine learning has also influenced dynamic branch prediction
[[75, |43]] where most of the recent research has focused on. Shi ef al. [81]
proposed a mixed approach for dynamic branch predictor which uses static
information in the form of a Graph Neural Network [74] to aid the dynamic
prediction.

2.3.3 Branch Prediction in Compilers

This subsection presents the schemes used in two prominent compilers used
nowadays: GCC [86] and LLVM [45]]. It is notable that both have a way
for the programmer to label the expected branch by the use of the function
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__builtin_expect (long exp, long c). Its semantics is that c is
the expected value of the expression exp.

LLVM The following information is only relative to LLVM version 10.0.0.
There are two main branch prediction schemes in LLVM. The default one is
just assigning a uniform probability to each successor of a basic block. This
is done automatically and no pass is called.
The implemented branch prediction works at the LLVM IR level and it is a
subset of the one described by Ball and Larus [4] plus some language depen-
dent heuristics. One heuristic after the other are tried in sequence, until one’s
deemed applicable and the predicted probability is assigned to the branch. The
branch predictor is implemented as a pass that visits the CFG in post-order ap-
plying the sequence of heuristics shown in Table

The detailed implementation of each heuristic can be found in the class
BranchProbabilityInfo atthe method calculateﬂ The pass is called
multiple times for levels optimization ~01,-02 and —03 as an input for subse-
quent optimization. More information are detailed in Subsection [3.3] LLVM
estimates the frequency of the Basic Block in a function using the predicted
branch probabilities. This is done by the class BlockFrequencyInf oﬂ
The algorithm is an approximation of the Markov chain results in Eq. [2.2]that
runs in linear time complexity(in the sum of edges and nodes of the CFG).

GCC GCC has similar heuristics to LLVM, but it also uses many heuristics
that are also tailored for the input language, in fact there are heuristics for C
and Fortranﬂ There are two different schemes of aggregation of the different
heuristics: only the first heuristic that matches is kept, or using Dempster-
Shafer theory [98]. In GCC’s source ﬁ] are also cited three of the already men-
tioned papers [4, 96, 13] but there is no mention if and how these papers are
used. In particular the one by Calder [13]] which uses a neural network, seems
not to be implemented, while the other two are implemented in the form of the
heuristics and aggregation using Dempster-Shafer.

'The class can be found at the following link https://1llvm.org/doxygen/
classllvm_1_ 1BranchProbabilityInfo.html

“The class can be found at the following link https://1lvm.org/doxygen/
classllvm_1_1BlockFrequencyInfo.html

SThe complete list can be found here https://github.com/gcc—-mirror/gcc/
blob/master/gcc/predict.def

*https://github.com/gcc-mirror/gcc/blob/master/gcc/predict.


https://llvm.org/doxygen/classllvm_1_1BranchProbabilityInfo.html
https://llvm.org/doxygen/classllvm_1_1BranchProbabilityInfo.html
https://llvm.org/doxygen/classllvm_1_1BlockFrequencyInfo.html
https://llvm.org/doxygen/classllvm_1_1BlockFrequencyInfo.html
https://github.com/gcc-mirror/gcc/blob/master/gcc/predict.def
https://github.com/gcc-mirror/gcc/blob/master/gcc/predict.def
https://github.com/gcc-mirror/gcc/blob/master/gcc/predict.c
https://github.com/gcc-mirror/gcc/blob/master/gcc/predict.c
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Heuristic Description
MetadataWeights Use metadata from profiling or
other sources.
InvokeHeuristics If the branch instruction is an in-
voke, branch taken in likely.
UnreachableHeuristics Branches that lead to unreachable
basic blocks are unlikely to be
taken.

ColdCallHeuristics A block post-dominated by a block
with a call to a cold function is un-
likely to be reached.
LoopBranchHeuristics Assign to backward edges high
probability, and to exiting edges
low probability.
PointerHeuristics Pointer Heuristic from [4]. Appli-
cable if there is a pointer compari-
son.

ZeroHeuristics Similar as Pointer Heuristic, but
with integer comparison.
FloatingPointHeuristics | Predict branch based on compari-
son operator between two floating-
points variables.

Table 2.2: Heuristics used by the LLVM compiler framework to estimate
branch probabilities. They are evaluated in the order they are shown here.

2.4 Neural Networks

Originally inspired by the biological behaviour of the neurons, neural networks
[10] are a class of machine learning models. Their fundamental constituent is
the artificial neuron. The artificial neuron computes a non-linear function o of
a linear function of its inputs x1, =, . . ., x,,. The coefficient of the linear func-
tions are the free parameters of the model, which are tweaked during learning.
The neuron is depicted in Figure and represents the following function:

out = o <Z w; - x; + b) (2.4)

=0

Where the weights w; and the bias b are the free parameters. As their name
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Figure 2.3: The artificial neuron: the scalar variables x, xs, ..., z, are the
inputs that get multiplied by the weights wy, wo, . . ., w,. After summing them
up, they are further applied to a non-liner function o.

suggests, neural networks are a set of interconnected artificial neurons. Due
to the many possible network shapes and neuron variations, neural networks
come in numerous flavours. The following subsections present only two types
of neural networks relevant for the rest of the thesis.

2.4.1 Feed Forward Neural Networks

Feed Forward Neural Networks (FFNN) are organized in layers of neurons:
the output of a neuron is an input of each neuron in the next layer. The last
layer is called the output layer, and its neurons’ results is network outcome.
The first layer, referred as the input layer, is not made of neurons, instead its
components are the entries of the input vector x. All the other layers are called
hidden layers, and are composed of a variable number of artificial neurons.
The total number of hidden layers is also a free parameter of the network.

An example of a FFNN with only one hidden layer is given in Figure [2.4
The layer structure of neurons allows to conveniently compact the numerous
equations of the form [2.4]into Equation 2.5 with the use of vector operations.
Bold lowercase symbols represent vectors, while bold uppercase symbols rep-
resent matrices. The symbol - represents the matrix multiplication operator.

z=0(W;y-x+by) x € RY z,b; € R W; € RV 2.5)
y = 0(Wa -z + by) = output y, by € RO W, € RO ’



18 CHAPTER 2. BACKGROUND

The Universal approximation theorem [41]] proves that a Feed Forward Neu-
ral Network can approximate, under some weak assumptions, any continuous
function with arbitrarily precision, making neural networks a flexible and pow-
erful tool in many scenarios.

3 Input : Hidden 3 ‘ Output
3 layer 3 ‘ layer 3 ‘ layer 3
e S 3
. » | |
3 : V'Q : Out‘put
‘ Z1 l - W 7
o ' : | |
3 : - ‘ : A 2 Output

Figure 2.4: Schema of a Feed Forward Neural Network with a single hidden
layer. The input layer has size /V, the size of the input vector. The output layer
is constrained to have size O, the same of the output vector. The hidden layer’s
size H can be chosen at will.

2.4.2 Recurrent Neural Networks

Recurrent Neural Network (RNN) [32, (78] are a class of neural networks that
are designed to deal with sequential input data, such as time series or words
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hg —| NN [~ h;y | NN |—hy — -+ —ht 1 —| NN [— hr
| | |
Xo X1 XT
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hy 1 —| NN |— h;

T

Xt

Figure 2.5: How RNN process the input data X' = [x3, X2, ..., XT]. The same
functions is applied at every input vector x; and state vector x;. The output is
the last state vector. The top picture is the “unrolled” version of the bottom
one.

in a text. The following paragraph describes a simple RNN architecture. Nu-
merous variations of RNNs develops from this blueprint.

Basic RNN Given and input sequence X = {X¢}+—o__7 the idea of RNNs
is to compute a vector hy (usually called state) which encodes the previous
inputs. RNNs learn a function that given an input and the previous state outputs
the next state. This function is applied sequentially to each input vector. This
process is depicted in Figure [2.5]

Given an input sequence X = {Xt}+—o,. 11 of vectors of dimension d, the
simplest RNN is described by the following equation:

ht+1 :U(WXt+Uht+b) (26)

Where h, is the state at timestep ¢, o(+) is a non-linear activation function, such
as the hyperbolic tangent or the sigmoid function. W and U are matrices, and
b a vector. The output of the RNN is the T-th state hy. learning finds a value
for W,U, and b.

RNNs were developed to overcome the limitations of Time Delay Neu-
ral Network (TDNN) and Elman Network [[60] which cannot learn long term
dependencies due to vanishing gradient [32]].
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2.5 Code Naturalness

In the area of machine learning and programming language it is often assumed
the naturalness hypothesis of programming languages [3]] which states:

“Software is a form of human communication; software corpora
have similar statistical properties to natural language corpora
and these properties can be exploited to build better software en-
gineering tools.”

Under this assumptions it is possible to use methods of Natural Language Pro-
cessing with any programming language and therefore LLVM’s IR. If this
claim holds, the techniques for natural language processing [100, [16] work
on source code. Among the applications are code defects identification [|19,
101]], code to text transformations [42, |61]] and vice versa [[102] |99]], and also
program optimization [23]].

The next Section presents a type of NLP word embedding technique that is
used to encode the LLVM IR statements later in the thesis.

2.6 Word Embedding and word2vec

Natural Language Processing (NLP) deals with textual inputs, mostly language
used by humans. Originally [20,|15] techniques that work directly on the text
were used, with the advancement of ML techniques the prospect changed: it
was evident that the two fields could be merged, but there was the need to
encode the input to be used by the ML algorithm like the neural network de-
scribed in Sections 2.4.1l and 2.4.2] The connection can be done with word
embeddings: given a vocabulary V' of all the possible words, word embedding
represents words with vectors.

A simple encoding method is the one-hot encoding which becomes un-
practical as the size of the vocabulary increases. To lower the dimension of
the encoding Distributed Representation were invented. Distributed Repre-
sentation represents an input using many dimensions of the embedding space.
A common way to deal with these data is to embed each word into a vector,
which is a more practical way representation for many tasks.

Among the different types of word embedding techniques distributed rep-
resentations [46, 63, 57, 7] are the most commonly used due to their better
generalization and efficiency on large vocabulary of words. Some examples
of these embedding algorithms are: [63] 8]
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Context

e
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truly your forgiveness | implore
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Figure 2.6: The words in black font are the context of the green word “forgive-
ness” in this excerpt from Edgar Allan Poe’s Raven[66].

2.6.1 word2vec

Mikolov et al. [58]] proposed two new models for embedding words in a dense
vector space called Continuous Bag of Words (CBOW) and Skip-gram model.
They are both implemented in the word2vec application which is used to
indicate them. Both models reduce training time compared to previously pro-
posed algorithms [J8].

Both models are fed with a text 7" and encode words based on the context in
which they appear in. Mikolov ez al. define the context of a word C'tz(w) as the
set of its surrounding words as exemplified in Figure [2.6] but other definitions
can apply. Next the Skip-gram model is described as it is used later in the
thesis.

Training Given a set of possible words called the vocabulary V', each word
w € V has two vectorial representations in R": v,, called the input vector,
and v/, called the output vector. These vectors are learned to maximize the
likelihood of the dataset, as described by the following equation:

arg max H H p(clw) (2.7)

weT ceCtax(w)
Where the conditional probability of a word c of being in the context of w

is given by:

/
evc'vw

’
E 61}d"uw

deV

p(clw) = (2.8)

Finally all output vectors are discarded, and the input vectors are the represen-
tations of each word.

All the process can be conveniently cast into matrix multiplications, and
further optimizations can speedup the calculation of the denominator of the
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probability in Equation[2.8] word2vec is further analyzed in [[71] 31]].

The word2vec model is used in other fields, among them speech recogni-
tion (speech2vec [21]]), graph embedding (graph2vec [35]) and biology
(gene2vec [27]). Itis used later in the thesis to encode the statements in the
LLVM IR. The explanation is left for later in Chapter {4



Chapter 3

Analysis of LLVM’s Branch Pre-
dictor

This chapter analyses LLVM’s branch prediction on the programs contained in
the SPEC CPU 2006 benchmark [83]]. The chapter also presents a comparison
with the state-of-the-art heuristics. The goal of this preliminary analysis is
twofold: first it can give insights on regularities and patterns that can be used
in the subsequent branch predictor chapter, second it motivates the need for
a better branch predictor. The analysis assesses the branch predictors in two
ways: first the goodness of the predictions is evaluated with different metrics,
and then the performance improvement achieved by employing the predictors
is measured.

3.1 LLVMIR

LLVM’s IR is the intermediate representation of the LLVM’s compiler infras-
tructure. It exists in three form: as a human readable text file, as a bitcode
binary file and as a data structure in LLVM [72]. The IR language is designed
to match most of the high level constructs of programming languages while
being easy to translate in one of the target architectures available. The hu-
man readable version is simple to understand. An example of the definition
of a function that computes the Euclidean distance of a point (x, y) from the
origin is the following:

define float @distance (float %x, float %y) {

Fmul = fmul float %x, %x

23
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gmull = fmul float %y, %y

%add = fadd float %mul, %mull

%$sgrtf = tail call float @sqgrtf (float %add)
ret float %sqgrtf

declare float @sqgrtf (float)

This snippet can help highlight some features of the IR. The language sup-
ports variables, functions, and types. Local variables are introduced by the %
sign, while global symbols (such as function names) by @. The IR supports
simple and structured types. The IR is by default in Static Single Assignment
(SSA) form [1], which means that each variable is assigned only once. SSA is
convenient for many analysis and optimizations. Basic blocks are referenced
by labels like the ent ry_block label in the snippet above. Labels are re-
garded as local variables and are referenced by the control flow instructions.

LLVM’s IR has only 3 types of control flow instructions: br(branch),
switch, and invoke instructions. br instructions are of two types: condi-
tional and unconditional. The latter is equivalent to a goto: the control flow
is always directed to another basic block, while the former chooses one of the
two directions to take upon evaluating a boolean variable. switch instruc-
tions can have more than two successors and invoke instructions are used to
deal with runtime errors (similar to exception handling in programming lan-
guages).The different types of instructions are shown in the following snippet:

; unconditional branch
br label S%next
; conditional branch
br il %condition, label %taken, label %nottaken
; Switch
switch i32 %variable, label $%default |

i32 0, label %labell

i32 1, label %label?2

i32 2, label %label3
]
; 1lnvoke
invoke void @function(...)

to label %normal unwind label %$exception

The unconditional branch is of no interest for this research as no control flow
decision is to be predicted. Moreover both the switch and invoke instruc-
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tions are not taken into account: the former because is infrequent and the latter
because it is highly predictable as exceptional behaviour is supposed to be un-
likely. The rest of the thesis focuses only on conditional branches.

3.2 Data

This Section describes the data used both in this chapter and in the next ones.
Before describing the actual dataset used, let us make some general consider-
ations.

The data we wish to use is an IR representation of a program with the

probabilities associated to each branch instruction. Branch probabilities are
obtained by profiling a program when running on some inputs, and then map
the branch probabilities to branch instructions in the IR. This process high-
lights the fact that the data we are dealing with is composed of two interacting
parts: the program, in the form of source code, and its inputs. The inputs af-
fects the control flow and consequently the branch probabilities. To highlight
this fact we can use an example: given a program, suppose we take as inputs
for profiling its unit tests. The tests are built to cover all possible cases in a
program, especially corner cases and error situations to find possible bugs.
Testing inputs are crafted to execute non-frequent code regions therefore not
representing the “average” control flow of the program. We argue that the
branch probabilities should represent the average behaviour of the program
such that the optimization have effect on most execution of the program.
To formalize this, suppose I € 7 the random variable representing an input in
the set of all inputs Z, and B € {1,0} a branching instruction where value 1
means taken, and 0 not-taken. The probability distribution p(B|[) represents
the conditional probability from we are sampling from. The objective is to
get the marginal probability of the branch, removing the dependency from the
input:

=> p(B=1Ip(I) 3.1)
IeT
Assume we can partition the inputs set Z into two classes: normal inputs Ly,
expressing the expected behaviour of the program, and exceptional inputs L,
representing exceptional behaviour of the program. Moreover assume the for-
mer are more likely than the latter p(I € Zy) > p(I € Zg) we can write the
approximation:
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Benchmarking suite | Used By Description

SPEC CPU ’92/2000 [4,796,790, Benchmark for performance evalu-
/06 14, 180]] ation of the CPU.

BioBench [89] Bioinformatics algorithms.
ptr-dist [89] Pointer intensive benchmark.
MediaBench II [189] Algorithms on media formats.
Polybench [189] Various numerical algoithms.

Table 3.1: Collection of some of the benchmarks used in previous work.

p(B=1)~ Y p(B=1)p{I)
Iy
As testing all the possible normal inputs is impossible for most programs, a
subset of them will we used as a sample for the whole class.

Finding programs is not difficult given the many open source projects avail-
able, the problem is in acquiring relevant inputs for them. Previous works used
benchmarks to perform their experiments because they are: standard, equipped
with inputs, and built with the intent to measure a given metric. For example
the SPEC CPU [39] is built to stress CPU and memory, while MediaBench
[477] focuses on the performance of media encoding and decoding programs.
Table [3.1] summarizes some of the benchmarks used in previous work. Pro-
grams will have various flow behaviour, some will have a more regular one, for
example matrix multiplication, while others a more erratic one, e.g. particle
simulator.

For this project we use SPEC’s CPU2006 for two reasons: first it is a col-
lection of different types of program spanning various areas, and secondly
it allows to compare with earlier work on branch prediction as shown in the
second column of Table Table [3.2] instead, describes the content of the
benchmark. Fortran programs are not yet considered due to a lack of standard
frontend. Each program in SPEC’s CPU is provided with three set of inputs:
train, test and ref. Each of them has a purpose in the evaluation of the
benchmark. Some comments about the choice of this dataset are given later
in Section 3.6 when threats to validity are discussed.

3.2.1 Preprocessing

Preprocessing transforms raw data to a form that is suitable for the machine
learning task. For this project the goal for preprocessing is to extract LLVM
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Name Language Description
CINT - Integer benchmarks
400.perlbench C PERL Programming Language
401.bzip2 C Compression
403.gcc C C Compiler
429.mcf C Combinatorial Optimization
445.gobmk C Artificial Intelligence: go
456.hmmer C Search Gene Sequence
458.sjeng C Artificial Intelligence: chess
462.libquantum | C Physics: Quantum Computing
464.h264ref C Video Compression
471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms
483.xalancbmk | C++ XML Processing
CFP - Floating point benchmarks

410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry
433.milc C Physics: Quantum Chromodynamics
434.zeusmp Fortran Physics/CFD
435.gromacs C/Fortran | Biochemistry/Molecular Dynamics
436.cactusADM | C/Fortran | Physics/General Relativity
437 leslie3d Fortran Fluid Dynamics
444 namd C++ Biology/Molecular Dynamics
447 .dealll C++ Finite Element Analysis
450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing
454.calculix C/Fortran | Structural Mechanics
459.GemsFDTD | Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.Ibm C Fluid Dynamics
481.wrf C/Fortran | Weather Prediction
482.sphinx3 C Speech recognition

27

Table 3.2: Content of the SPEC CPU2006 benchmark. The benchmarks in red

are not used.
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IR code with branch probability information. To do that each program in the
benchmark is profiled using Clang [88]], a C frontend for LLVM. Programs are
compiled with -fprofile-instr—-generateand -~coverage-mapping
options. These two options create a profiling report for each run of the pro-
gram. The report contains two information: how many times a function is
executed and the probability of each branch, switch, and invoke instructions.
LLVM stores branch probabilities as branch_weights: given abasic block,
each of its successors is given an integer weight. Dividing each weight by the
sum of all weights gives the probability of executing that block.

Each program in the benchmark is profiled on all given inputs sets(t rain,
test, ref). Then each program is recompiled with the profiling informa-
tion and emitted as LLVM IR. A sample of the workflow is shown in the script
below.

clang —fprofile-instr—-generate —-fcoverage—-mapping
— file.c -o file.o

# execute program

clang —fprofile-instr-use=file.profdata file.c
— —emit-llvm -S file.ll

The output is an annotated IR, such as the following one:

define i64 @factorial (i32) #0 !prof !28 {
%2 = icmp sgt i32 %0, 1
br il %2, label %3, label %11 !'prof !'29

; <label>:3: ; preds = %1
%4 = sext i32 %0 to i64
br label %5

; <label>:5: ; preds = %3, %5
$6 = phi i64 [ %4, %3 1, [ %9, %5 ]
%7 = phi 164 [ 1, %3 1, [ %8, %5 ]
%8 = mul nsw i64 %7, %6

%9 = add nsw i64 %6, -1
%10 = icmp sgt i64 %6, 2
br il %10, label %5, label %11 !prof !30
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; <label>:11: ; preds = %5, %1
$12 = phi i64 [ 1, %1 1, [ %8, %5 ]
ret i64 %12

}

128 = !'{!"function_entry_count", i64 0}

129 = !'{!"branch_weights", 132 9, i32 1}

'30 = !'{!"branch_weights", 132 3, i32 7}

The IR contains the profiling information in the form of metadata annotations.

The profiling metadata is described by the ! prof token, followed by a meta-

data entry number such as ! 30. The meaning of each metadata entry is listed

at the end of the file. Referring back to the previous example, ! 30 represents
3

branch weights, leading to the probability 5= and 3%7

3.3 Evaluating LLVM’s Predictor

The first experiment conducted is analyzing LLLVM’s branch predictor accu-
racy. As already mentioned in subsection[2.3.3] LLVM uses a set of heuristics
to predict branch probabilities. Each heuristic assigns the same probability to
the branches for which it applies. As a result there is a finite set of probability
that can be assigned to branches. These are listed in Table [3.3]

3.3.1 Comparison with Heuristics

As cited in Subsection [2.3.3] LLVM’s predictor implements a subset of the
heuristic defined by Ball and Larus [4]] and add some language specific ones.
To the best of the author’s knowledge the reason why the developer did not
implement all Ball and Larus heuristics is not known nor mentioned anywhere.
For completeness of comparison we implemented Ball and Larus [4] and Wu
and Larus [96] heuristics, as they are the only ones that assigns probability to
branches among the related work in Section

We collected the branches for which there was profiling information. For
each of them the profiled branch probability is retrieved (the ground truth).
For each of these branches we also collected the predicted branch probability,
one for each heuristic. We restrict the focus only on the taken direction of each
branch, as the non taken is symmetric and will lead to the same result.



30 CHAPTER 3. ANALYSIS OF LLVM’S BRANCH PREDICTOR

Taken Not-taken | Description

96.8% 3.2% Loop heuristic.

5.8% 94.2% Cold call heuristic

62.5% 37.5% Pointer, Zero, Floating point heuristics
~ 100% ~ 0% Invoke heuristic

50% 50% If none of above applies

Table 3.3: Possible branch probabilities assigned by LLVM’s branch heuristic
mechanism.

For a branch b call 8, the predicted branch probability and 6, the ground
truth branch probability. Let’s define the indicator function I(x = y) as fol-
lows:

Ir=y) = {1 ey (32)
0 ife#y

Moreover for a branch b we define its execution count ec, the number of times
it has been executed during the profiling, and ¢, the number of times the branch
has gone the taken direction. Symmetrically ¢; is the number of times the not-
taken direction is followed. Of course ec, = ¢, +t, must holds for each branch
b. The heuristic are evaluated and compared taking two different perspective:
as a branch predictor and as a branch probability predictor.

As a branch predictor Branch predictors are binary classifiers, they predict
what will be the most likely taken successor of a branch. For convention as-
sume a prediction of 1 to represent the taken successor to be the most likely
and 0 for the opposite.

A heuristic that assigns a probability ¢ to a branch, can be turned into a branch
predictor with the following function:

h(&)—{l if6 > 0.5 .
0 ifd <05

Turning each heuristic and the profiled branch probability into branch predic-
tors it is possible to compute two metrics: accuracy and miss rate. These two
metrics are used in most of the previous researches in branch prediction of
Section
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Accuracy measures the percentage of branches correctly predicted with the
following formula:

ZbeB I(h(6y) = h(6)))
|B]

This metric is important, but as remarked in the introduction, the main target

for optimization are branches executed more frequently. Therefore a more

insightful metric is the miss rate, which is the percentage of the execution of

branches that are mispredicted. The miss rate takes into account the execution

count of each branch.

accuracy = (3.4

D venty L(h(0y) = 0) + - I(h(6)) = 1)
EbeB €C
The miss rate is lowerbounded by the Perfect Branch Predictor (PBP), which

is the miss rate obtained by using the branch predictor derived from the ground
truth branch probabilities (6, instead of ;).

miss_rate = 3.5

As a probability branch predictor Branch probability predictors assigns
to each branch a value in the interval [0, 1]. As a probability branch predictor
we want to measure the discrepancy between the predicted branch probability
and the true one. A straightforward metric is the mean squared error (MSE):

 Sieslth— 0
5]

The weighted mean squared error (WMSE) is also computed to include the
execution count of each branch.

MSE (3.6)

> ben €6« (0 — 0p)?
ZbeB €C

The above metrics are computed on SPEC CPU 2006 benchmark. They are

firstly evaluated on each programs of Table [3.2] separately and then on the

benchmark as a whole. The results are presented later in Section [3.5]

WMSE =

(3.7)

3.4 Branch Probability effect on Performance

The goal of this experiment is understanding what is the effect of the branch
predictor on the performance of the program. Before explaining the evaluation
method, the two following paragraphs explain the effect of branch probabilities
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in LLVM’s optimization. The effect of function counts is also explained as it
is part of the profiling information used later in the evaluation.

Passes affected by branch probabilities

The branch prediction is invoked by using the ~-branch-prob optimization
pass. This pass is run many times in the default optimizations levels -01, —
02, and -03. Branch probabilities are used directly and indirectly by many
components of LLVM. Their main use is in code generation as they drive the
block placement in the binary file. Other uses can be found in Transforms (IR
to IR transformations) such as: PartialInlining, GuardWidening,
and JumpThreading where the branch probabilities are used as a measure
for the usefulness of the transformation. Finally branch probabilities are used
widely in target-specific operations.

As describe in Section [2.1] branch probabilities are the basis for com-
puting basic block frequencies, in fact LLVM’s optimization levels pairs the
branch-prob pass with the block-freq pass which approximate the so-
lution obtainable with equation Therefore all the passes influenced by
block frequencies are affected by the branch prediction mechanism. Block
frequencies are used in register allocation, function inlining, and spilling [84].
Block frequencies are used as a decision variable for applying or not loop
transformation such as : Loop Unrolling, and Loop Hoisting.

Passes affected by function counts

Function count is the other information collected with profiling along with
the branch probabilities. Function counts are only used in function inlining.
Contrary to the case of branch probabilities, LLVM treats differently the case
where function counts are coming from profiling and the estimated ones.

Evaluation

The evaluation compares the running time of the benchmark compiled with
the heuristics used in the previous sections. Two other configurations derived
from each program’s profile are also tested: one is compiling with the full
profiling information, and the other with profiling information deprived with
the function counts, as summarized in Table[3.4] These two serve as reference
as having the “perfect” information of each program’s behaviour.

Each configuration is compiled with the —02 optimization level. This is
because we want to see if the branch probabilities have a performance impact at
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Configuration | Branch Data | function Count
Only Branch v X
Profile v v

Table 3.4: The two additional compilation configurations that use profiled in-
formation.

the maximum optimization level. It is also relevant from a user perspective, as
itusually it interfaces with the default optimization levels. The benchmarks are
run on a computer equipped with an Intel i7-4710HQ processor and DDR3-
1600 RAM. The benchmarks are run 3 times, and the median time for each
benchmark is reported. This is the default method of evaluating SPEC CPU
benchmarks.

The speedup is computed between each of the configuration and the basic
LLVM predictor according to the following equation:

Trovv—Topt .
et it Trpvr < Tope
Speedup = LLVM
Trovv—Topt
Topt )

(3.8)
it Ty > Tope

Where 15, is the execution time of either one of the heuristic, while 77,1y
represents the execution time of the basic LLVM branch predictor. If T 1y <
T, the speedup is negative and represents a slowdown. The Equation [3.8]is
symmetric and therefore speedups and slowdowns can be compared. More-
over, to see the branch probability impact on function inlining, we also repeat
the evaluation with Link Time Optimization (LTO) enabled. LTO enable inlin-
ing between compilation unit which uses branch probabilities. The speedup of
the LTO case is computed with respect to the basic LLVM predictor compiled
with LTO enabled.

3.5 Results

From the profile information we obtain the distribution of branch probability
for the taken direction, as shown in the left plot of Figure [3.1] We can further
analyze the distribution by taking the probability of the least frequent (sym-
metrically the most frequent) direction for each branch. The distribution is
shown on the right plot of Figure [3.1] By taking the cumulative of this dis-
tribution one can infer that roughly 80% of the branches take one of the two
directions with more than 80% probability. This confirms the finding of Fisher
and Freudenberg [29] on the predictability of branches.
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Figure 3.1: Branch probability distribution on SPEC’s CPU2006 benchmark.
On the right the distribution represents the taken branch probability. On the
right the distribution has been "folded" by using the symmetry at 0.5.

In Figure[3.2the distribution of the taken probability is overlapped with the
distribution of branch probabilities predicted by LLVM. The discretization of
the frequencies is due to LLVM’s predictor itself as described in subsection
[3.3] It is immediately evident that the two distribution differ, notably LLVM’s
predictor assigns more probability mass around 0.5 while the profilied prob-
abilities are more dense around the extremes of the [0, 1] interval. Moreover,
LLVM’s heuristic fail to assign branch probabilities almost half of the times.
The picture can be misleading as it does not take into account the number of
times a certain branch is executed.

The miss rate and accuracy metric are shown in Table [3.5| while MSE and
WMSE in Table[3.6l The different heuristics are referred as follows: “LLVM”
is LLVM’s predictor, “BALL” is the Ball and Larus heuristic, and “WU” is
the Wu and Larus heuristic. The perfect branch predictor is referred with the
“PBP” label.

Both Ball and Larus and Wu and Larus heuristics have a better accu-
racy and miss rate than the basic LLVM branch predictor, while for MSE and
WMSE LLVM’s branch predictor outperforms the other two heuristics.
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LLVM Branch Probability Distribution
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Figure 3.2: Branch probability distribution on SPEC’s CPU2006 benchmark,
LLVM’s prediction is compared with the profiled distribution.
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Figure 3.3: Distribution of branch probabilities weighted by the number of
time the branch is executed.
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3.5.1 Performance Improvement

The running times for each benchmark and heuristic are reported in Appendix
The Speedups for the benchmarks are represented in Figure [3.4] for the case
without LTO, and Figure for the LTO case. Both pictures represents the
average speedups for each configuration.

For both with and without LTO, the average speedups of all the config-
uration tested is positive. Moreover the average of Ball and Larus and Wu
and Larus heuristics coincide in both cases. Slowdowns occur rarely among
the benchmarks. A significant divide can be observed between the profiled
program and the heuristics only in the LTO case.

3.6 Conclusions

The previous analysis shows that the state-of-the-art heuristics outperform
LLVM’s branch probability prediction in terms of accuracy and miss rate.
Moreover both Ball and Larus and Wu and Larus heuristics cause a positive
speedup on almost every program in the benchmark both with and without
LTO. Assuming the speedup can be replicated for other programs than the
one considered, the implementations of the Ball and Larus and Wu and Larus
heuristics are an important contribution to LLVM’s framework considering its
widespread use.

Table 3.5 shows that there is still room for improvement in the miss rate
and accuracy of the branch predictor. The speedup obtained by improving the
prediction is more difficult to interpret: the use of profile information (whether
only branch probabilities or the full profile) proves consistently better than the
heuristics when compiled with LTO. This fits with the assumption that better
branch predictors gives better results, hence using profiling information gives
an upperbound on the speedup. Although, when the programs are compiled
without LTO this assumption does not hold anymore: for some programs the
heuristics outperform the profiled information, and the average speedup of the
heuristics and the profiled one are almost identical.

Within LLVM a more accurate branch predictor will most likely show its
benefit when a program is compiled with LTO. Moreover more aggressive
compilers such as UNISON [50} 49] could benefit from more accurate branch
probabilities.

Another comment regarding the experimental setup has to be addressed:
the speedups are dependent on the hardware the program runs on. The speedup
results are obtained on a CPU with a CISC architecture [[37]], which includes
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Speedup on SPEC CPU2006 - with LTO

12.5 1
10.0 4
7.5 A
S
5 5.0
3
°
[
[
&
2.5 4
0.0
o - ~ Y P s X~ k] = X
5 Y g 5 5 by 2 3 o & 5 = 3 5 b g p 2
S N > 3 IS £ 9 Z N 9 g £ T o 3 N = <
£ Q m o ) £ @ g © T [v] " < ° I9) 1) o <
—2.5 N ~ g o o < o] > g iy 5 m 5 N 2 2 N &
. ) [S) & ) < ] & : 3 > By A < S o m s
Q < s H < <9 b H < < < < o n o
: < = © ~ X <+ < ©
o < ] < N S <
S ~N N ™
< © ©
-5.0- ¥ N
ben€hmarks
Mean Prof. Branch=3.34 Mean Wu Larus=1.86 W Prof. Branch W Wu Larus B Profile
Mean Ball Larus=1.83 Mean Profile=3.93 B Ball Larus

Figure 3.5: Speedup on SPEC CPU 2006. Speedups obtained on LLVM’s branch predictor as described in Section [3.4|with
LTO enabled. The means of Ball and Larus and Wu and Larus configurations are overlapped.



CHAPTER 3. ANALYSIS OF LLVM'S BRANCH PREDICTOR 41

hardware optimization that can mitigate the effect of a poor branch predictor.
We can only speculate to obtain different speedup results (but not necessarily
better) on a RISC architecture, which are more simple and reliant on compiler
clues.

Threats to Validity Taking this benchmark as a representation of programs
still require a motivation. We do not have a more convincing argument than
the availability of the data, but certainly the benchmark was not designed to
represent a wide variety of programs behaviour. As stated in the documenta-
tion [38]]: “SPEC CPU2006 focuses on compute intensive performance, which
means these benchmarks emphasize the performance of: the computer pro-
cessor (CPU), the memory architecture, and the compilers ”. Some work has
been done in analyzing redundancy in SPEC CPU itself [65] concluding that
some programs share similar behaviour (considering branches, memory ac-
cesses and cache access). Many other real-life programs may not benefit so
much of a better prediction of probabilities, e.g. a web server may be bottle-
necked by the network’s latency, or a rendering program might be limited by
the disk’s writing and reading speed.

Considering the —02 optimization level as the baseline for the evaluation
may be incorrect as the optimization process is just a hand-crafted sequence
of passes and algorithms carefully tuned. The snippet of Listing|[I] taken from
LLVM’s inlining pass, shows how the optimization process is influenced by
hard coded parameters, and therefore can induce a speedup or a slowdown.
Because of this we are not assured that the performance is monotonic increas-
ing as the prediction of the branches gets better.

// Various magic constants used to adjust
—~ heuristics.

const int InstrCost = 5;

const int IndirectCallThreshold = 100;
const int CallPenalty = 25;

const int LastCallToStaticBonus = 15000;
const int ColdccPenalty = 2000;

Listing 1: Small excerpt from LLVM’s InlineCost class(https://
llvm.org/doxygen/InlineCost_8h_source.html#100042).


https://llvm.org/doxygen/InlineCost_8h_source.html#l00042
https://llvm.org/doxygen/InlineCost_8h_source.html#l00042

Chapter 4

Representation Learning Branch
Predictor

This Chapter describes the methodologies used to address the main question
of the thesis: predicting branch probabilities through representation learning.
Section [4.2] describes the preprocessing of the data and the embedding of the
instructions. Sectiond.3|describes the model used to predict the branch prob-
abilities. The evaluation of the model is left to Chapter [5]

4.1 Solution Outline and Intuition

Each instruction in a programming language represents an operation and has
a precise formal semantic, that is the relation between its inputs and its out-
puts. The semantic of groups of instruction can represent an abstract operation
such as “add element to a hash table” or “sort a list”. These operation can
emerge as patterns coming directly from the programmer’s implementation of
a function. Note that the semantic of the program comes from the interplay
of two factors: the instruction performed, and the data structure used [22} 94].
Just like humans can have an intuition about the semantic and behaviour of a
program solely by reading it, we assume under the naturalness hypothesis (see
Section [2.5) that by using natural language processing it is possible to predict
branch probabilities by “reading” a program.

A practical realization of this intuition is given by the following example:
consider two program snippets, one using a linked list and the other using a
balanced binary tree as in Figure Suppose two algorithms traverse each
data structure: to test the stopping condition both check the pointer(s) for the
next element(s) in the data structure. For the linked list it checks the pointer to

42
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the next element to be NULL, while for the tree it checks for each of the two
children’s pointer to be NULL. That test has a different probability of being
true depending on the data structure used. In the example for the linked list
only the last element will make the condition true, so the branch probability is
%. For the binary tree every leaf has a NULL pointer and therefore the proba-
bility % As the number of elements increases the first tends to 0 while the
other tends to % By leveraging the information about the data structure used,
it is possible to draw conclusion about the branch probabilities. The heuristics
cited in Subsection [2.3.1| would not have distinguished between the two data
structures because they are designed for assembly languages which does not
have such information.

LLVM’s IR types represents the information about the data structure used.
Our hypothesis is that by leveraging semantic information contained in the
IR we can obtain accurate prediction of its branching behaviour. The amount
of possible data structures and the different combinations of them creates a
massive amount of cases to cover by heuristics. This motivates the use of
representation learning algorithm to automatically deal with the problem.

X1 Xo XN X1
Xo X3
NN
Xy o X5
struct list { struct tree {
void* content; void* content;
struct list* next; struct tree* left;
} struct tree* right;
}
// traversal algorithm // traversal algorithm
if (list—->next == NULL) if (tree—->1left == NULL)

Figure 4.1: Example of how semantic information can help in predicting
branches.
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4.2 Preprocessing

This section describes the extraction of the data used for training and testing
the branch predictor. The source dataset is SPEC CPU 2006, the same de-
scribed and used in Section [3.2] Before describing the the preprocessing step,
a brief observation is required; for any machine learning application data is
the most critical part. It is critical for two reasons: first it represents the exam-
ples to learn from, secondly the representativity of the data is what makes a
learned model general, applicable to other datasets. For these reasons the op-
timal dataset must be rich with different types of branches and must represent
many types of program types and behaviours. We have no guarantee about
the representativity of the dataset in use. Some work [65] have analyzed the
similarities inside the benchmark itself identifying some redundancy, but have
not compared with other programs behaviour.

The starting point of the preprocessing is the LLVM IR resulting from the
compilation of each compilation unit in the benchmarks. On the IR the binary
branches for which we have profiling information (the ground truth to learn
from) are identified. The outcome of a branch is determined by the instructions
executed before, but for prediction purposes the instructions executed in the
target blocks might give useful information (e.g. trigger an exception, exit the
function, etc.). The information about the target blocks is also used in the
most of the heuristics explored in Subsection m [[14] 4, 96]. Therefore the
instructions of the 3 basic blocks involved in a branch are extracted from the
IR and all of them are used for predicting the branch probability as depicted

by Figure 4.2

BB,

p= p(BBl — BB2|BBl, BBQ, BBg) b 1 —p

BB, BB;

Figure 4.2: The goal of the predictor is to predict the branch probability p
between basic blocks BB and BB, given the instruction of BB;, BBy and
BBs.

It is possible that the basic blocks contain only a small amount of instruc-
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tion. For this reason we include instructions from other basic block with the
following rule: if BB; has only one predecessor, it too is included as the list
of instructions before the branch. A similar procedure applies for BB2 and
BB3: if any of them has only one successor, it too is appended to the list of
instructions. An example of how this rule works is shown in Figure The
number of collected instructions for each basic block is limited to 50 to avoid
using unnecessary instructions.

Figure 4.3: Extraction of the instruction from the CFG. Consider the branch
in b3 and the successors by and b;. Each colored rectangle represents the the
basic blocks from which the instructions are taken.

Each list of instructions has to be further processed to be easily used in any
machine learning algorithm which rarely use the textual form of the input. The
next subsection presents how the encoding of the instructions is performed us-
ing inst2vec [6], a model to learn embeddings for LLVM’s IR instructions.

4.2.1 Embedding and inst2vec

inst2vecisanalgorithm for learning embeddings of LLVM’sIR. inst2vec
builds from word2vec described in Section[2.6] inst2vec does two things:
normalizes the instruction to avoid a huge vocabulary, and it redefines the con-
cept of context (C'tz(w)) of a word (instruction) w.
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The normalization of the instructions is described later, let’s start with the
definition of the context. inst2vec defines the context informally as “state-
ments whose execution directly depends on each other” [|6]. The formal def-
inition of the context is built from two binary relations over the instructions:
execution dependence and data dependence. An instruction [ is execution de-
pendence from w if it can be executed immediately after w. An instruction [
is data dependent from w if it uses a value defined or modified by instruction
w. Given an integer C' called context size, define the context of a word w as
the set of instructions found by recursively applying the definitions of data and
execution dependence no more than C' times. More information can be found
in the original inst2vec paper [6].

The vocabulary is built by first processing the instructions to remove all the
sources of variations in the instructions that would increase the vocabulary size
greatly. First the IR is stripped out of the unnecessary elements: comments,
metadata, attributes, declared functions, target architecture, source filename,
call to assembly functions, assembly modules, COMDATS (which specify ex-
ecutable file properties). Statements on multiple lines are aligned into one.
Structures are also inlined by substituting the named structures with its defi-
nition recursively until there are no more named structures. Then identifiers
(such as variable names) are substitute by a token <ID> while immediates are
substituted by a token specifying its type, such as <INT>, <FLOAT>. Imme-
diates are saved separately to be used as an auxiliary input.

The vocabulary is reduced by removing those instructions which appear
less than 50 times in the sources. This greatly reduces the size of the vocabu-
lary. Instructions that are not present in the vocabulary are substituted with an
<UKN> token. An example is given by considering a subset of the instructions
of Listing [2] they are preprocessed in Listing [3] The embedding are learned
by using the Skip-gram model [58] described in [2.6]
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%struct.node = type { i32, %struct.node**, i32 }

define void @mark_visted($struct.node*) #0 {

%2 = alloca %struct.node*, align 8
struct node{ store $struct.node* %0, %struct.node** %2, align 8
%3 = load %struct.node*, $%$struct.node** %2, align 8

int value;
struct node** nexts;
int visited;

%4 = getelementptr inbounds %$struct.node, $%$struct.node* %3
<y i32 0, i32 2

%5 = load i32, i32* %4, align 8

%6 = icmp ne i32 %5, 0

br il %6, label %7, label %8

bi

void mark_visted (struct node* vertex) {

; <label>:7: ; preds = 31
if (vertex->visited) { br - oe
return; <1 ol 51
; lab ; preds = %1
lelse{

%9 = load $%$struct.node*, %struct.node** %2, align 8
%10 = getelementptr inbounds $%struct.node, $struct.node*
— %9, i32 0, i32 2
store i32 1, i32* %10, align 8
br label %11
; <label>:11: ; preds = %7, %8
ret void
}

vertex->visited = 1;

}

Listing 2: Correspondence between a C function and its LLVM’s IR equivalent
representation.

define void @mark_visted (%$struct.node*)
define void <@ID> ({ i32, opaque**, i32 }¥*)

%2 = alloca $%struct.node*, align 8
<%ID> = alloca { i32, opaque**, i32 }*, align 8

store %struct.node* %0, $%$struct.node** %2, align 8
store { 132, opaque**, 132 }* <%ID>, { i32, opaque*~*,
— 132 }** <%ID>, align 8

%3 = load %struct.node*, $%$struct.node** %2, align 8
<%ID> = load { 132, opaque**, 132 }*, { 132, opaque**,
— 132 }** <%ID>, align 8

%5 = load i32, i32* %4, align 8
<%ID> = load i32, i32* <%ID>, align 8

%6 = icmp ne i32 %5, O
<%ID> = icmp ne i32 <%ID>, <%INT>

br il %6, label %7, label %8
br il <%ID>, label <%ID>, label <%ID>

Listing 3: Some examples of the preprocessing step on a subset of instructions
of Listing E} The original instructions are highlighted in light blue.
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4.3 Model

The following section describes the architecture and the design decisions of
the branch probability predictor. We remark that contrary to all previous ap-
proaches, in this project the encoding uses an unsupervised embedding al-
gorithm to encode the input. The training and evaluation methods are also
described. The results are reported in the next chapter.

4.3.1 Predictor architecture

Figure|4.4]shows the predictor’s high level architecture. Given a binary branch
in LLVM’s IR, the three basic block involved are extracted as described in
Section [4.2] and each of the instruction is encoded using inst2vec. Each
basic block’s embedded instructions are fed into a a type of RNN called Long
Short Term Memory (LSTM) network [40]. LSTMs are covered in Appendix
[A]but the basic structure shown in Figure [2.5|still holds for LSTMs. The use of
LSTM over other RNN architecture is motivated by their empirical reliability
and common use in other NLP tasks [82] 55, |87, 92]]. At the output of each
LSTM layer we obtain a single vector, one for each basic block. In an analogy
with NLP, if instructions are like words, basic blocks are like paragraphs.

The three representation of the basic blocks are then fed into a Feed For-
ward Neural Network (as described in Subsection [2.4.T)). The network has an
additional input that describes the loop structure of the branch, as both Fisher
and Freudenberger [29] and Ball [4] remarked their highly importance and
easy to predict. The additional information represents the cases where the
branch: is a backedge (B) of the loop, exits a loop (EX), or none of the previ-
ous (DK). The output of the FENN is the predicted probability of the branch to
be taken.

Parameters The embedding size of inst2vec is chosen to be 128. The
output size of the LSTM cells is of size 128, the same size as the input vectors.
The LSTM cells have no particular optimization as suggested by Greff et al.
[33]. The FFNN has two layers, one of size 256 and the other of 64. The
activation functions in the hidden layer are tanh (to avoid vanishing gradient)
and the output activation function is a sigmoid to obtain an output in the range
[0, 1].

Loss Function One can derive a loss function by computing the likelihood
of the data. To do that one has to model the outcomes of the branch statistically.



CHAPTER 4. REPRESENTATION LEARNING BRANCH PREDICTOR
49

B/EX/DK

TN inst2vec —{ LSTM

3 b 1?—]2—-,3
1 oo 1" inst2vec —{ LSTM |—| FENN (— p

X inst2vec — LSTM

Figure 4.4: High level architecture for the branch predictor proposed in the
thesis.

Calder et al. [|14]] used a Bernoulli random variable to model each branch thus
using a cross-entropy loss function. As they point out themselves, this will not
predict to the probability of the branch itself. Therefore this will only increase
the accuracy of the predictor and not the precision of the branch probabilities.

A branch execution can be modeled as a sequence of Bernoulli experi-
ments (branch taken or not taken) therefore, assuming independence between
the executions, a binomial random variable is suitable for describing multiple
execution of the branch. Given a branch, calling ec its execution count, ¢ the
number of times the branch has been taken, and ¢ = ec —t the number of times
it is not taken, the likelihood of the predicted branch probability g is:

0= (7)) (-9 @

Taking the negative logarithm of the above quantity we get the following loss
function:

L(0) = — log (1(5)) — 4.2)

~ _log KT)] —t-log (9) —(ec—1) - log (1 - é) (4.3)

Note that the above equation takes into account the execution count of each

~

branch. The minimization of £(#) is hence equivalent to minimizing the miss
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rate of the predictor.
For a single branch we can find the global minimum the parameter 6 will con-
verge to. Taking the derivative we obtain the following:

) 1 1
aﬁ(ﬁ) =—t- =+ (ec—1t)- - (4.4)
00 0 1—-46

Solving for the derivative to be 0 we get:

aL(H) Ly 45)
o0 '
=t (4.6)

ec

The optimal branch probability tends to the fraction of the execution where the
taken direction is executed. The derivative of Equation [4.4]is used in gradient
descent to train the predictor. Given the magnitude of the execution count of
some branches (in the order of 10° or above), there is the risk of numerical
problems in the computation of the derivative or, more importantly, exploding
gradient[32] hence a more difficult convergence to the minima of the func-
tion. Given these possible problem the mean squared error loss between the
predicted branch probability 6 and the true one 6 = é for each branch b;.

. 1 E N2

£0.0)= %> (ebi - ebi) 4.7)
Where K is the batch size. The above loss aims at minimizing the error be-
tween the predicted and true branch probability, regardless of the number of

times a branch is executed.

4.3.2 Evaluation Methods

Training Training is done into two steps: first inst2vec is trained on all
benchmark’s sources, then the classifier is trained using the obtained embed-
ding. During the predictor’s training the embedding are not changed. inst-
2vec is trained for 5 epochs with a context size of 2, the same as described in
its original paper [6].

Training Parameters The learning rate is controlled by the ADAM [44]]
algorithm. The division of training and testing set is done on a benchmark
level so that the model learns program-independent features.
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Evaluation on SPEC CPU To be able to compare all the programs in the
benchmark a k-fold cross validation is performed: k disjoint subsets of bench-
marks are created from SPEC CPU. Each subset becomes the test set of the
model trained on the remaining part of the benchmarks. At each iteration the
model is re-initialized and trained from scratch. For the purpose of this project
k is chosen to be 10.

Model | Shared W | Norm.
A v v
B v X
C X v
D X X

Table 4.1: List of configurations of model’s parameters. “Shared W” repre-
sents the sharing of the LSTM parameters and “Norm.” is the normalization
of the embeddings.

Model exploration Before evaluating the predictors performance, four dif-
ferent variations of model are compared, to then choose the model to be used
later. The 4 models test all the permutations of 2 model parameters:

* Sharing LSTM’s parameter: The 3 LSTMs in Figure 4.4] can be dif-
ferent network or be the same used in all 3 cases. Given that the task of
the LSTM is to encode a basic block, and that the problem is somewhat
symmetric it is plausible that a single LSTM is enough to do that.

* The embedding normalization: In the inst2vec paper [6] the em-
beddings are normalized before being used to perform predictions. The
normalization transforms each embedding into a unitary length vector
in the L, distance.

A model is built for each combination of these two feature obtaining the 4 mod-
els (identified by letters) summarized in Table 4.1] These models are trained
on 15 out of the 20 benchmarks, and tested on the remaining 5. The split is
performed randomly.



Chapter 5

Results

This Chapter shows the outcome of applying the model described in Chapter
M on SPEC’s CPU 2006. The evaluation follows a similar structure to Chapter
[3] where prediction accuracy and its impact on the performance are evaluated
separately.

5.1 Model Selection

The following section presents the results of model selection among the mod-
els of Table 4.1l and described in Subsection Each model is trained and
tested on the same sets of benchmarks: the test set is composed of the fol-
lowing five benchmarks: 473 .astar ,456.hmmer ,458.sjeng ,483~-
.xalancbmk, and 445 . gobmk, while the remaining ones are further di-
vided into training and validation sets. The validation set is chosen to have
two benchmarks not to reduce the training set size excessively. The valida-
tion set is composed of the following benchmarks chosen at random: 400 . -
perlbench, and 482 . sphinx4.The training is done with early stopping
[32] on the loss of the validation set.

The evaluation of each model is done on the metrics described in Section
B.3land its results on the test set are summarized in Table[5.1l Each model has
the best score on one of the four metrics, therefore it is not possible to conclude
that a model performs better than the others. We restricted the choice between
model A and B, as they are the network with less parameter. Among A and B
we choose B as it has better score on three out of four metrics in Table 5.1l
We can get some insight on the trained model by looking at the distribution
of the predictions. The left column of Figure shows the distribution of
the predicted branch probabilities on the test set compared to the ground truth
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Model Accuracy @ MSE  WMSE Miss Rate

A 60.91%  0.20015 0.057 16.86%
B 63.12%  0.19769  0.082 16.55%
C 60.64%  0.19468 0.079 17.61%
D 61.12%  0.20506  0.060 15.41%

Table 5.1: Summary of the metrics computed on the four models of Table
on the training set.

ones on the same set. The distribution of the prediction error is also shown on
the right column. The red dashed line represents the average execution count
of the branches in each error interval of the histogram.

From the distributions on the left columns one can qualitatively see that the
predicted distribution assigns more mass to the extremes of the [0, 1] interval
than the LLVM’s predictor. From the right column we observe the unimodal
shape of the error distribution, and that the peak of the average execution count
tends to be close to zero, indicating that frequently executed branches are easier
to predict.

5.2 Prediction Result

To be able to compare all the benchmarks a k-fold cross validation is per-
formed: k disjoint subsets of benchmarks are created from SPEC CPU then
each subset becomes the test set of the model trained on the remaining part of
the benchmarks. At each iteration the model is re-initialized and trained from
scratch. For the purpose of this project k is chosen to be 10.

Table[5.3|presents the results for the accuracy and miss rate, while Table[5.3]
displays the results for the MSE and WMSE. The tables compare the predictor
with the results on the heuristics of Chapter[3] On a per-benchmark analysis,
the developed branch predictor constantly outperforms the other approaches
in accuracy, miss rate, and MSE for most of the programs. Overall the branch
predictor improves Ball and Larus heuristic’ accuracy of 4.69% and slightly
improves the miss rate. Moreover the predictor has the lowers MSE, and the
second best WMSE.
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Figure 5.1: Prediction results of the four models of Tableon the test set. The
left column show the distribution of the predicted and true branch probabilities
on the test set, while the right one shows the distribution of the prediction error.
In red is the weighted error distribution.
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5.3 Performance impact

The effectiveness of the branch predictor is finally measured as the impact it
has on the performance of the programs. Each benchmark is compiled with the
predicted branch probability obtained in the previous sections. The compila-
tion and running parameters are the same used in Chapter[3] The running time
of each benchmark is compared against LLVM’s branch predictor to obtain the
speedup as described by equation [3.8]

The results are shown in Figure [5.3] (without LTO) and [5.4] (with LTO).
On average the predictor has a slight slowdown compared to LLVM’s pre-
dictor both with and without LTO. Turning the attention to the per-benchmark
speedup we observe the predictor is constantly outperformed by Ball and Larus
and Wu and Larus heuristics both with and without LTO.

Similar to the analysis of Figure [5.1] Figure [5.2] shows the distribution of
the predicted branch probabilities and the prediction error. Qualitative insights
can be drawn from the figure: the distribution of branch probability is very
uniform apart from two peaks near 0 and 1. Moreover the error distribution is
consistent with the ones obtained in Figure[5.1] Also note that the peak of the
average execution count is exactly in 0.
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Figure 5.2: on the left, distribution of the predicted branch probabilities for
all the programs in SPEC CPU. On the right the distribution of the prediction
error and it relationship with execution counts.
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Chapter 6

Conclusion and Discussion

This chapter draws the conclusion from the results presented in Chapter[5| The
research question presented in Chapter [I]is answered and finally future work
is proposed.

6.1 Conclusion

In Chapter [ we developed a branch predictor that uses representation learning
to encode the instructions of a LLVM IR program. The predictor is evaluated
as a branch predictor and as a branch probability predictor against the state-of-
the-art heuristics. Table [5.2] shows that the developed predictor outperforms
the state-of-the-art heuristics in branch prediction obtaining a smaller miss rate
and a higher accuracy. As a branch probability predictor obtains the smallest
MSE among the considered predictors, but not the WMSE. Section @ an-
alyzes the speedup obtained with the predictor compared to LLVM’s one. It
shows that, despite having the lowest MSE, accuracy, and miss rate, the predic-
tor causes on average slowdowns compared to LLVM’s and it is consistently
outperformed by Ball and Larus and Wu and Larus heuristics. The use of link
time optimization (LTO) leads to similar results and conclusions.

Addressing the research question, representation learning allows for a more
accurate branch probability prediction compared the considered heuristics as
displayed by the improvements of MSE, accuracy, and miss rate. However,
the predictor does not obtain the same improvements on the speedup of the
compiled programs. For this reason, and for the computational cost of using
a neural network, the heuristics are still more suitable for LLVM. However
the predictor showed positive results for some programs in the benchmark,
therefore we advocate further research to draw decisive conclusions. The next
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section suggests some ideas for future work.

Threats to validity The project takes into account only SPEC’s CPU bench-
mark which is purposely crafted to stress CPU and memory. The benchmark
may not represent the behaviour of most programs, which can undermine the
conclusion drawn in this section. Cummins et al. [24] pose the problem of the
small amount of datasets used in compiler research and its negative effect on
the machine learning models.

6.2 Future Work

The conclusions drawn in this thesis are not decisive, therefore to consolidate
the work more experimentation must be performed. The following paragraphs
suggest research ideas and experiment to continue this work.

The first consideration derives from the threats to validity described in the
previous section, diverse sets of programs and benchmarks must be used to
draw general conclusion. Optimizing the branch predictor is another natural
direction future research can approach. The optimization can target two as-
pects of the branch predictor: improving the representation of the input, and
fine tuning the classifier. The former seeks for a better representation method
for the instruction, while the latter optimizes the classifier in prediction perfor-
mance. Specifically, inst2vec can be modified to generalize better across
different programs or different representation of code can be devised. For ex-
ample it is possible embed the single tokens in each instruction instead of the
whole instruction. Current research is also experimenting with representation
of programs as graphs (3} 2]. A recent one uses graph neural networks [235]]
to perform program analysis and optimization. Possible improvements can
also be achieved by modifying the loss function to take into account the exe-
cution count of the branches. It is also possible to build and evaluate hybrid
branch predictors combining heuristics and a machine learning powered pre-
dictor similar to the work of Veerle et al. [26]. The two can be combined by
using Dempster-Shafer theory, or by prioritizing heuristics when applicable
and then using machine learning to predict the other branches.

Current compilers are focused on a representation of the code that is func-
tional to the different stages of compilation, but little focus is given to a repre-
sentation can be used for predictive modeling. The first attempt to add a second
representation of the code was made with MilepostGCC [30]. Milepost—
GCC is a compiler based on GCC that extracts static feature from source code,
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and uses machine learning models to predict the optimal optimization flags for
compilation. The features are human-engineered and are easily extracted from
the source code and the CFG. MilepostGCC proved a relevant and consis-
tent speedup over GCC [30]. The use of other representations of code such as
inst2vec has proven useful within single tasks such as heterogenous device
mapping [6] and thread coarsening [52, 23], but no compiler has been devel-
oped to incorporate it into its workflow. Therefore a possible future work is in
developing such a compiler, schematized in Figure 0.1, where a parallel rep-
resentation of the compiler’s IR is used to perform analysis on the code and
as a feedback to the optimization process. A similar vision is expressed in the
work of Cummins et al. [23]] were they show how their optimization predictor
for OpenCL kernels could be part of such architecture. Although they pro-
pose to learn features directly from the source code, which is impractical as
it implies developing and training a model for each source language. Using
neural networks in the prediction part in the architecture of Figure might
look computational demanding, but note that the network can be used to output
multiple prediction at the same time, therefore amortizing the cost of predic-
tion. The predictor developed in this thesis is one of the many architecture
fitting for such a compiler structure.
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Figure 6.1: High level structure of a compiler that uses a parallel representation
of the program to do automatic analysis and optimization of the code.
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Appendix A
LSTM

This appendix focuses on the Long Short Term Memory (LSTM) [40] cells, a
type of RNN (see Section[2.4) used in this thesis in Chapter 4]

The network learns to produce other vectors, called gates, they choose
which features to remember, to forget and to output. The gates are: the forget
gate (f;) chooses how to filter the previous context vector, the input gate (i)
chooses which feature to add to the context vector, and the output gate (o)
filters which part of the context are output in h;. The ‘filtering’ is performed
with the Hadamard product (®) which is defined as the element-wise product
of two multidimensional arrays. When used in a Hadamard product, i;, f;, o;
act like a switch on the elements of the context, since they all are in the [0, 1]
range. The LSTM cell is depicted in Figure[A.I|and its equations in[A.T]

ft: ft):O'(Wf'Xt—f—Uf'htf]_‘i‘bf)
)

i) = o(W;-x¢ + U - hy_q +by)
f)t) = O'(WO - Xt + Uo . ht—l + bo)

o
iy = o
o = o

o

(A.1)
g — ét> = tanh(Wc - Xt + Uc . ht,1 —+ bc)
¢ =fi Oc1 +ig O ay
ht =0t ©® tanh(ct)

Where the function o represents the sigmoid function and tanh is the hyper-
bolic tangent function.

Learning a model means finding values for the free parameters of the equa-
tions above, in particular for W¢, Wi, W, W, Ug, U;, U, U, b, by, b, be.
The number of parameters to learn in the LSTM’s setting is much greater than
the simple RNN case exposed in Subsection[2.4.2] Insights on how to fine-tune
the network can be found in the following paper [33]].
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Figure A.1: Internals of a LSTM cell. The picture highlights the relationship
between the different parts of the cell.
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Appendix B

Complementary Results

benchmarks LLVM  Prof. Ball Wu Profile  Predicted
Branch Larus Larus
400.perlbench  241.26  226.51 244.62 246.71 227.19 245.64
401.bzip2 37240 36594 36598 361.89 359.92 389.85
403.gcc 236.39 225.68 227.77 231.63 223.68 229.64
429.mcf 27226 26994 263.59 261.38 266.99 280.74
445.gobmk 387.11 367.69 375.13 37549 36449 384.80
456.hmmer 302.16  300.92 301.00 301.06 302.55 301.45
458.sjeng 392,39 37299 388.89 387.52 374.03 406.58
462.libquantum 446.42 447.44 428.13 432.22 447.64 429.57
464 .h264ref 407.30 40296 400.68 397.94 399.70 408.36
471.omnetpp 313.47 314.87 315.31 308.69 311.56 324.28
473.astar 322.51 314.77 313.27 31528 319.63 328.36
483.xalancbmk 179.32 17296 17425 17547 171.68 179.08
433.milc 400.76  396.26 379.44 380.18 412.67 389.16
444 namd 277.54 27217 281.35 277.63 272.66 293.21
447 .dealll 230.75 229.54 225.34 225.13 232.10 228.23
450.soplex 222779 220.30 213.20 21395 22744 218.00
453.povray 112.67 107.83 110.66 114.34 109.07 114.95
470.1bm 314.27 313.61 298.08 300.04 326.79 300.99
482.sphinx3 407.32  400.50 399.79 392.60 406.01 407.10

Table B.1: Execution time for each benchmark, for the different testing con-
figurations without LTO enabled.
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benchmarks LLVM  Prof. Ball Wu Profile  Predicted
Branch Larus Larus
400.perlbench  248.44 218.32 236.64 241.77 219.01 23991
401.bzip2 387.17 366.55 366.30 370.75 365.36 385.67
403.gcc 231.91 217.89 224.60 227.18 21799 226.81
429.mcf 280.03 257.42 25648 258.15 253.12 271.75
445.gobmk 370.61 355.38 358.48 358.20 353.57 366.61
456.hmmer 304.73 301.02 304.86 304.06 299.65 307.62
458.sjeng 376.02 35944 37553 380.70 35592 388.39
462.libquantum 429.66 430.86 429.55 426.75 43248 42841
464 .h264ref 402.36  393.17 393.60 394.60 388.12 399.11
471.omnetpp 284.48 29234 30228 283.33 289.12 287.81
473.astar 311.41 309.00 304.63 303.28 303.47 324.22
483.xalancbmk 169.66 161.81 162.00 16583 158.92 165.32
433.milc 365.53 361.56 367.66 367.93 359.61 360.01
444 namd 279.04 271.30 280.24 279.35 271.81 294.25
447 .dealll 197.54 193.27 19327 193.68 19522 195.82
450.soplex 218.07 21698 213.76 213.59 218.09 219.95
453.povray 101.87 97.33 100.84 100.21 95.23 103.44
470.1bm 300.05 302.92 299.60 299.40 300.64 29791
482.sphinx3 401.10 387.78 397.59 393.56 389.27 416.59

Table B.2: Execution time for each benchmark, for the different testing con-
figurations with LTO enabled.
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