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Abstract

Necessary Conditions for Constraint-based Register
Allocation and Instruction Scheduling

Kim-Anh Tran

Compilers translate code from a source language to a target language. Generating
optimal code is thereby considered as infeasible due to the runtime overhead. A
rather new approach is the implementation of a compiler by using Constraint
Programming: in a constraint-based system, a problem is modeled by defining variables
and relations among these variables (that is, constraints) that have to be satisfied. The
application of a constraint-based compiler offers the potential of generating robust
and optimal code. The performance of the system depends on the modeling choices
and constraints that are enforced. One way of refining a constraint model is the
addition of implied constraints. Implied constraints model logically redundant relations
among variables, but provide distinct perspectives on the problem that might help to
cut down the search effort. The actual impact of implied constraints is difficult to
foresee, as they are tightly connected with the modeling choices made otherwise.
This thesis investigates and evaluates a set of implied constraints that address register
allocation (decision where to store data) and instruction scheduling (decision when to
execute instructions) within an existing constraint-based compiler back-end. It
provides insights into the impact on the code generation problem and discusses assets
and drawbacks of the set of introduced constraints.
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1
INTRODUCTION

High-level languages abstract from details of the underlying machine and thus
enable programmers to implement portable, compact and expressive code. In
order to run a program written in a high-level language, the source code needs
to be translated into machine code that can be processed by the CPU.

The translation process is achieved by a compiler. A compiler is a program
that consists of two components: a front-end and a back-end. The front-end
reads the input program and constructs an equivalent representation (Inter-
mediate Representation (IR)) of the code that can be used by the back-end for
generating the final machine code. There are three tasks that are associated
with a compiler back-end: instruction selection (choose appropriate machine
instructions), instruction scheduling (create a schedule that specifies when to
execute which instruction) and register allocation (determine where to store
data).

Within the scope of this project, the focus lies on a compiler back-end that
is being developed using Constraint Programming (CP). CP is a methodology
for solving combinatorial problems: a problem is expressed as a constraint
model that consists of a set of variables and a set of constraints, which express
relations among these variables that have to be true. A solution to a CP prob-
lem is a complete variable-value assignment which satisfies all constraints.

Usually, instruction selection, instruction scheduling and register alloca-
tion are solved in stages, i.e. one after another. This may result in suboptimal
solutions as the decisions in one part affects the decisions in the remaining
parts. By formulating the code generation problem as one constraint model
that has to be solved, instruction selection, instruction scheduling and regis-
ter allocation are accomplished in consideration of each other. This may offer
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CHAPTER 1. INTRODUCTION

possibilities for optimization as interdependencies between those tasks can
be exploited. On top of that, a constraint-based compiler has the potential of
generating optimal code. Finding an optimal solution is generally considered
as infeasible due to time concerns so that heuristics are applied instead.

The constraint model within this project incorporates both register alloca-
tion and instruction scheduling. Instruction selection is not part of this com-
piler and has thus to be accomplished before. In the scope of this master the-
sis the aim is to investigate constraints that ideally optimize the solver’s perfor-
mance by cutting down the search effort. If the constraints can detect conflict-
ing assignments at an early stage within search, unnecessarily explored dead-
ends can be avoided. These constraints are called implied constraints and do
not change the set of solutions but add implied knowledge to the model that
can be helpful during search. However, implied constraints have the poten-
tial to improve, but also to worsen the performance of a solver; for instance
by adding too much computational overhead. Therefore, an evaluation of im-
plied constraints is required.

1.1 Goal

The goal of the master thesis is the investigation, implementation and evalu-
ation of static implied constraints addressing register allocation and instruc-
tion scheduling in basic blocks. Basic blocks are maximal sequences of in-
structions with only one entry point and one exit point. In order to provide
an insight into the impact of each constraint on the code generation problem,
the thesis delivers:

• a set of implied constraints addressing register allocation and instruc-
tion scheduling in basic blocks, and

• an evaluation of the impact of these on the search effort and thus a
solver’s performance.

1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 covers back-
ground knowledge and introduces related work. It describes the problem of
instruction scheduling and register allocation, gives an overview on CP and
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1.2. THESIS OUTLINE

presents the constraint model on hand. Chapter 3 introduces the set of im-
plied constraints that are implemented and evaluated within this project. The
implementation details are listed in Chapter 4 and the evaluation is presented
in Chapter 5. On the basis of the experiments, Chapter 6 discusses the impact
of implied constraints on the code generation problem. Chapter 7 summa-
rizes the results and gives a direction for future work. The bibliography con-
tains information from the DBLP Computer Science Bibliography [24] which
is made available under the ODC Attribution License [6].
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2
BACKGROUND

This chapter summarizes preliminaries that are relevant for the following chap-
ters. It is divided into three parts: Section 2.1 describes the base problem of in-
struction scheduling and register allocation. Section 2.2 gives an overview on
constraint programming. Finally, Section 2.3 introduces the base constraint
model with its variables and constraints.

2.1 Compiler

A compiler translates a program from a source language into a target language.
The translation process is called compilation and consists of two separate
stages: program analysis and program synthesis [1]. The first stage of program
analysis is performed by a compiler front-end. The front-end checks the in-
put program against syntactic and semantic correctness and only if no errors
were found, an equivalent but more compact representation of the input pro-
gram is created. The created IR serves as an input to the compiler back-end
during the second stage. The compiler back-end first maps instructions of
the IR to appropriate machine instructions (instruction selection) that can be
processed by the CPU. Then it generates a schedule for instructions that deter-
mines the order in which instructions are executed (instruction scheduling).
Finally, it selects the location where computed values are stored (register allo-
cation). Figure 2.1 shows the compiler components and their respective input
and output values. In the context of this thesis, the focus lies on the compiler
back-end and its two tasks of instruction scheduling and register allocation.
The following sections will introduce terms associated with both tasks and
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2.1. COMPILER

Front-End

Back-End

input program

IR

output program

Figure 2.1: The compilation pipeline

elaborate them in more detail. Note that architectural details given in the fol-
lowing sections refer to the Mips32 [20].

2.1.1 Instruction Scheduling

This section introduces relevant concepts related to instruction scheduling. It
describes the problem of creating a schedule for instructions and gives exam-
ples for related work.

An instruction is an entity of a program that can be executed. Each in-
struction is executed by a functional unit, which is a limited resource within
the CPU. A functional unit can only process one instruction at a time, whereas
one instruction may require several time units to finish execution. The execu-
tion of an instruction has a result, for instance a computed value (that is tem-

porary). Dependencies among pairs of instructions define which instructions
have to precede others: some instructions have to wait for other instructions
to finish execution, so that they can use the temporary that was computed.
Summing everything up, instruction scheduling can be defined as follows:

Definition 2.1.1. Instruction scheduling poses the problem of ordering a num-

ber of instructions in such a way that

1. precedence relations are respected, and

2. at no time the total consumption of functional units exceeds the capacity

(the number of available functional units).
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CHAPTER 2. BACKGROUND

b0:
. . .

b1:
. . .

b2:
. . .

Figure 2.2: The program flow of an example function. The flow is determined by the
precedences among the basic blocks (edges). After executing all instructions within b0,
the program execution will either change to executing all instructions in b1 or b2.

In other words, a schedule for instructions is created, whereas each in-
struction is assigned to a time unit (that is, issue cycle) which defines when
the instruction is executed. It is desirable to minimize the schedule length
(that is makespan).

Precedence relations are further distinguished as data precedences and con-

trol precedences. Data precedences occur due to data dependencies, i.e. if one
instruction depends on the computed temporary of another instruction. If an
instruction is data dependent on another instruction, it has to wait until the
result of that instruction is available to use. The time that passes between an
instruction is executed until the computed temporary is available for others
to use, is called latency. Control precedences are related to control dependen-

cies, where one instruction has to precede another instruction in order to pre-
serve the correctness of the program flow. An example program is shown in
Figure 2.2. It consists of three basic blocks , which are maximal sequences of
instructions with only one entry and only exit point. The precedences among
basic blocks determine the program flow. In this example, the program exe-
cution always starts with block b0 and continues either with block b1 or b2.
In order to ensure that all instructions that belong to block b0 are executed
before any instruction of a successor block is executed, control dependencies
are introduced. A control dependency enforces that all instructions within the
bounds of a basic block are executed before the block ends.

Similar to data and control dependencies, there are resource dependen-
cies among instructions that use the same functional unit. Instructions that
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2.1. COMPILER

share the same functional unit are dependent on each other. For instance, if
one instruction needs to consume a functional unit that is currently occupied
by another instruction, it has to wait until the functional unit becomes avail-
able, which is the case if the currently executed instruction finishes. The time
span, in which an instruction uses a functional unit for execution, is thereby
called duration.

Optimal instruction scheduling on basic blocks has been approached be-
fore as an Integer Linear Programming (ILP) [27, 2]. The instruction scheduler
by Wilken et al. [27] optimally solves basic blocks of a size of up to 1000 instruc-
tions. Their solution is based on a simplified integer program that is obtained
by graph transformations on the dependency graph. A dependency graph
is a directed acyclic graph that represents instructions and their dependen-
cies: instructions are nodes and dependencies are edges. The solution pro-
posed by Bednarski et al. [2] solves instruction selection, instruction schedul-
ing and register allocation for basic blocks. Their approach optimally solves
basic blocks up to a size of 22 instructions. Instruction scheduling has also
been modeled as a CP problem ([9, 18]). Ertl et al. [9] use constraint logic pro-
gramming and consistency techniques to optimally solve basic blocks up to a
size of 50 instructions [17]. Malik et al. [18] present an optimal scheduler that
solves blocks of a size up to 2600 instructions while remaining in a reasonable
time limit.

The constraint model that is used in the current compiler back-end to
solve instruction scheduling will be covered in Section 2.3.3.1. From here on,
functional units are generally addressed as resources that are consumed by in-
structions.

2.1.2 Register Allocation

This section introduces terms associated with register allocation. It defines
the problem and lists related work.

An architecture can have multiple, addressable storage banks to which
temporaries that are computed are stored to. The thesis distinguishes be-
tween two distinct storage banks: registers and main memory. Processor reg-
isters are part of the CPU. Data that resides in registers can be retrieved more
quickly than data that is stored in memory. For this reason it is desirable to
store as many temporaries as possible in registers. Distinct temporaries can
be assigned to the same register as long as their live ranges do not overlap.
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CHAPTER 2. BACKGROUND

The live range of a temporary is defined as follows: the live range of a tempo-
rary starts with the temporary definition (that is the execution of its definer
instruction) and ends with the last instruction that uses it. To be more precise,
the live range ends with the last instruction that uses it and might be executed.
The program flow is not statically defined (conditional jumps between basic
blocks) and thus it is not known for every instruction whether it will be exe-
cuted or not. In case a temporary is used by an instruction that might be exe-
cuted at a later stage, the temporary has to remain live. Putting this together,
register allocation can be defined as follows:

Definition 2.1.2. Register allocation poses the problem of defining which tem-

poraries are kept in registers in such a way that:

1. no two distinct temporaries that are live at the same time are assigned to

the same register.

Some temporaries are already pre-assigned to registers. Pre-assigned tem-
poraries have to reside in a specific register due to architectural constraints.
All temporaries that are not pre-assigned, can either be stored in a register or
in memory. Even if it is desirable to store temporaries in registers, some tem-
poraries have to be stored in memory instead as the number of registers is
limited. This is known as spilling.

The traditional approach of solving register allocation is graph coloring.
With k being the number of available registers, register allocation can be re-
duced to the question, whether an interference graph is k-colorable. In other
words, does a coloring with k colors exist, so that two connected nodes always
have distinct colors. An interference graph illustrates which temporaries can-
not reside in the same register. The nodes in an interference graph are tem-
poraries and the edges represent interferences. If two nodes are connected,
they cannot reside in the same register. Register allocation and spilling using
graph coloring is first implemented by Chaitin [4].

Goodwin et al. [12] present an ILP model for register allocation that sig-
nificantly reduces the spill code overhead (instructions that copy a temporary
from and to memory) compared to the traditional graph coloring approach.
However, their solution suffers from high compilation time when generating
optimal solutions. Bednarski et al. [2] solve both register allocation and in-
struction scheduling using ILP.

Section 2.3.3.2 covers the modeling choices for solving register allocation
using CP.

12



2.2. CONSTRAINT PROGRAMMING

2.2 Constraint Programming

This section first introduces the concept of Constraint Programming. It gives
an overview on how problems can be modeled using CP and how solutions
can be found. It thereby focuses on the two fundamental aspects of CP, namely
propagation and search. After a basic understanding of constraints, it explains
the meaning of implied constraints, which are the focus within the context of
this thesis.

CP is a methodology that is used for solving combinatorial problems. In
CP, a problem is formulated as a model that consists of variables, their poten-
tial values and constraints. If we take the context of a compiler back-end as an
example, a possible variable set would be the issue cycle ci of each instruction
i that has to be scheduled. An example set of potential values for their issue
cycles is {0, . . . ,n} ,n ∈N. Some instructions might have to be scheduled after
other instructions due to dependencies. Such dependencies can be formu-
lated as constraints. Given two instructions i and j , assume that i has to be
scheduled before j . The corresponding constraint would then be expressed
as follows: ci < c j . In other words, the issue cycle of i has to be smaller than
the issue cycle of instruction j . A solution to a constraint problem is found
by search. The solution search generates a search tree branching on potential
variable values that are picked due to a chosen heuristic. At each node, the re-
sulting domains are systematically reduced, using propagation. Propagation
removes values that are guaranteed to result in a failure, as these values, if
assigned to the corresponding variable, conflict with the defined constraints.
Values conflict with a constraint, if assigning that value to the corresponding
variable can never satisfy the relation that a constraint defines. In the result-
ing tree, each leaf is either a solution (assignments to variables satisfy all con-
straints) or a failed node (assignments conflict with at least one constraint).

Based on this intuition, some definitions related with constraint program-
ming follow. The notation in this section is partly taken from [21] and [18].

Definition 2.2.1. A Constraint Satisfaction Problem (CSP) is described by a

triple 〈V ,D,C〉: A set of variables V , a set of variable domains D and the set

of constraints C . A variable vi ∈ V = v1, . . . , vn has potential values defined in

the domain Di ∈ D. Each constraint ci ∈ C defines a relation between a set

of variables vars(c) ⊂ V . A solution to a CSP is a complete assignment of one

value to each variable, so that all constraints are satisfied. A variable is said to

be assigned, if its domain only contains one value.
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CHAPTER 2. BACKGROUND

Definition 2.2.2. A Constraint Optimization Problem (COP)
〈

V ,D,C , f
〉

is a

CSP that defines an additional objective function f . Likewise, a solution to a

COP is a complete assignment of one value to each variable, so that all con-

straints are satisfied. Each solution is mapped to a cost value by the objective

function f and the goal is to find a solution that minimizes or maximizes that

value.

The code generation problem within this project is a COP.

2.2.1 Propagation and Consistency

Propagation is the process of manipulating variable domains. Each constraint
is associated with one propagator. A propagator removes (that is prunes) val-
ues from variable domains that are known not be part of a solution: given
a constraint c, a propagator prunes a value x in the domain of a variable
v, v ∈ vars(c), if assigning x to v will never satisfy the corresponding constraint.
On the contrary, if for the assignment of v = x assignments to the remaining
variables vi ∈ vars(c) \ {v} exist, so that a solution to c is formed, the assign-
ment v = x is said to be supported. In this case, the assignments to the vari-
ables vi is the support for v = x. A propagator for a constraint is said to be at
fixpoint, if running that propagator again will not have an effect on the current
variable domains. In case a propagator will never change a variable domain
again (as the constraint will always be satisfied for the current assignments),
the propagator is entailed. There are different types of consistencies that can
be enforced on a constraint. The consistency determines the strength of prop-
agation, i.e. how many values are pruned. The prevalent types of consisten-
cies that can be enforced on a constraints are Value Consistency, Bounds

Consistency and Domain Consistency. Strong propagation is more effective
though time consuming. The appropriate consistency to choose is therefore
depending on the problem on hand. In the following, the three consistencies
are defined.

This definition of value consistency is taken from [3].

Definition 2.2.3. Partition vars(c) into avars(c), the assigned variables, and

uvars(c), the unassigned variables.

A constraint c is value consistent, iff for every v ∈ uvars(c) and x in the domain

of v, avars(c)∪ {v = x} can be extended to a solution of c, where uvars(c) \ {v}
may take any values, irrespective of their domains.

14



2.2. CONSTRAINT PROGRAMMING

Definition 2.2.4. A constraint c is bounds consistent, iff for every variable v,

values between the bounds of the remaining variables exist, so that the lower

and upper bound of the domain of v is supported.

Assume V = {x} ,D = {{3,6}}, then the values in the bounds of x are de-
scribed by the interval [3,6] = [3,4,5,6].

Definition 2.2.5. A constraint c is domain consistent, iff for every variable v ∈

vars(c), every value in its domain is supported.

Value and bounds consistency are weaker than domain consistency. In
order to illustrate the three levels of consistency, following example:

Example 2.2.1. Consider a CSP with V =
{

x, y, z
}

,D = {{0,2,4} , {2,3} , {4,6}}
and the constraints

{

c1 : x < y,c2 : x + y + z = 8
}

.

Enforcing Value Consistency. All constraints are already value consistent, be-
cause no variable is assigned yet.

Enforcing Bounds Consistency. Constraint c1 is not bounds consistent. The
upper bound {4} in the domain of x is not supported: if x = 4 there is no ex-
istent value in the bounds of [2,3] so that c1 is satisfied. Thus, propagation
will result in shrinking the domain of x to Dx = {0,2}. Constraint c2 is bounds
consistent for the resulting domains. Note: the upper bound value {3} in the
domain of y is supported, as assigning x = 0, z = 5 would for instance form a
solution, even though {5} is not existent in the actual domain of z. Neverthe-
less, {5} is within the bounds of z.

Enforcing Domain Consistency. First of all, c1 is not domain consistent. c1 be-
comes domain consistent, if the domain of x changes to Dx = {0,2} (domain
consistency implies bounds consistency). Furthermore, constraint c2 is not
domain consistent: y cannot be assigned to value {3}, as no appropriate value
in x, z exist. The final propagation yields Dx = {0,2} ,D y = {2} and Dz = {4,6}.

2.2.2 Search

Finding a solution to a constraint problem is a combination of search and
propagation. Propagation removes values from domains until all propaga-
tors are at fixpoint. If at least one propagator remains that is not entailed
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CHAPTER 2. BACKGROUND

yet (but at fixpoint), the search will split domain of an unassigned variable.
This is called branching. The decision which variable to branch on and how
to split the domain, is defined by the search heuristic. After a branching deci-
sion, the domain of a variable has changed, which might cause a constraint
to become inconsistent. In this case, running the propagators on the new par-
tial assignment will result in further pruning. This alternation of propagation
and branching continues until a domain is wiped-out (becomes empty), or
until all propagators are entailed (solution found). If a partial solution fails,
previous partial solutions are restored by a backtracking algorithm.

Example 2.2.2. Consider the following CSP with variables V =
{

x, y
}

, domains
D = {{1,2,3,4,5} , {2,4,5}} and the constraint C =

{

c : x = y
}

. Bounds consis-
tency is enforced on constraint c. The search heuristic is defined as follows:

1. branch first on x and assign the smallest possible value, and

2. then branch on y and assign the smallest possible value.

In this example, the search heuristic splits the domain in such a way that a do-
main of size one (so, one specific value) is assigned to the variable. Figure 2.3
shows the corresponding search tree, in which every node contains the vari-
able domains before propagation (upper half of node) and after propagation
(lower half of node). An edge represents a branching decision. At each node
propagation first removes all values that are not consistent with the constraint
c. For instance, in the root node, x = 1 is not supported, as there are no val-
ues in the the bounds of y , i.e. [2,5], so that x can be equal to y . Therefore, 1
is pruned from the domain of x. Afterward, the propagator is at fixpoint but
not yet entailed. Since no more values can be pruned and since the current
partial assignment is neither a failed node nor a solution, search branches on
the domain of x. The left branch assigns x to 2, whereas the right branch as-
signs x to the remaining values {3,4,5}. As the new assignment to x causes
constraint c to be inconsistent in both child nodes, the propagator prunes the
unsupported values. After propagation in the left child node, the propagator
is entailed: x and y are assigned to values that form a solution to the CSP. For
the right child node, another branch is required in order to find the remain-
ing solutions. In this example, there is no need to branch on y , as branching
on x is already sufficient to find all solutions. However, in real CSP instances,
several branching heuristics are required.
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2.2. CONSTRAINT PROGRAMMING

x = {1,2,3,4,5}
y = {2,4,5}

x = {2,3,4,5}
y = {2,4,5}

x = {3,4,5}
y = {2,4,5}

x = {4,5}
y = {4,5}

x = 5
y = {4,5}

x = 5
y = 5

x = 4
y = {4,5}

x = 4
y = 4

x = 4 x = 5

x = 2
y = {2,4,5}

x = 2
y = 2

x = 2 x = {3,4,5}

Figure 2.3: Search tree for CSP from Example 2.2.2

2.2.3 Implied Constraints

The thesis focuses on the investigation of implied constraints. Implied con-
straints are constraints that model already existing relations between variables
but from a distinct point of view. Removing implied constraints from a con-
straint model will never change the set of solutions found but may affect the
search effort that is required for finding a solution. Implied constraints have
been studied in isolation and in the context of different problem domains.
Dechter [8] presents an approach for detecting nogoods. Nogoods are par-
tial assignments of variables that cannot lead to a solution. A nogood con-
straint prevents variable value assignments that lead to these nogoods. Frisch
et al. [11] focus on implied constraints that can be derived depending on prior
choices of symmetry breaking constraints (remove symmetric solutions). Their
results show that the choice of symmetry breaking constraints play an impor-
tant role in deriving powerful implied constraints. A generalization of symme-
try breaking constraints are dominance constraints. Dominance constraints
remove solutions that are known to be worse than other existing solutions
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front-end instruction selector s2ls

extender modeler solver synthesizer

.c .s

.ext.ls .json .out.json .out.asm

.ls

Figure 2.4: The constraint-based back-end tool chain. The rectangle highlights its main
components (adapted from [15]).

(according to an objective). A general step-by-step approach for detecting
correct dominance constraints is given by Chu et al. [5]. In contrary to im-
plied constraints, symmetry breaking constraints and dominance constraints
reduce the set of existing solutions. However, they are similar as they aim at
reducing the search effort.

Whether or not an implied constraint cuts down the search effort is diffi-
cult to predict. Adding implied constraints can introduce problems and even
worsen the results of a constraint-based system. Smith [21] gives examples in
which the search heuristic correlates with the usefulness of an implied con-
straint: a constraint might forbid assignments that would never occur in a
search anyway. In this case, adding the implied constraints does not have any
effect on the search tree. Implied constraints can even worsen the results for
several reasons. First, they might confuse the chosen search heuristic, so that
the search effort increases instead. Moreover, adding new constraints might
introduce excessive computational overhead. Therefore, it is required to ana-
lyze and evaluate the implied constraints in order to gain a better understand-
ing on their actual impact on the problem in focus.

2.3 Constraint-Based Compiler Back-End

This section presents the constraint-based compiler back-end ([16],[15]). It
describes the underlying architecture and the constraint model for modeling
instruction scheduling and register allocation.

2.3.1 Architecture

The constraint-based compiler back-end is a tool chain that consists of sep-
arate components. Each component takes an input, processes it and creates
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a file containing its output. All main components with their input and out-
put files are illustrated in Figure 2.4. Each rectangle represents one compo-
nent. Edges between components represent the respective input or output
files. The components belonging to the constraint-based compiler back-end
tool are enclosed in the dashed rectangle.

The tasks of each component is the following:

front-end constructs an IR from the input source program,

instruction selector replaces all IR instructions by processor instructions,

s2ls transforms the current IR into the representation that
is used by the back-end tool,

extender performs changes to the representation that are used
for the formulation of the combinatorial problem,

modeler formulates the the problem by summarizing the pa-
rameters (number of basic blocks, instructions etc.),

solver constructs and solves the problem of instruction schedul-
ing and register allocation using CP, and

synthesizer assembles the output of the solver to the final assem-
bly code.

The main work within this thesis concerns the modeler and solver, see
Chapter 4.

2.3.2 Intermediate Representation

A function within the back-end tool is represented in Linear Static Single As-
signment (LSSA) form ([16]). In LSSA each temporary is only defined once.
Furthermore, the live range of a temporary is restricted to the bounds of its
basic block. An instruction that uses a temporary that is defined in a distinct
block cannot directly refer to that temporary. Instead, a new temporary is in-
troduced and used, which represents the same original temporary that was
defined in the other block. Those temporaries are called congruent. Congru-
ent temporaries refer to the same original temporary.

19



CHAPTER 2. BACKGROUND

The representation is extended by the extender to include two major changes
that are relevant for the formulation of register allocation. First, the exten-
der adds optional copy instructions to the already existing set of instructions.
Copy instructions are instructions that copy the value of one temporary to an-
other temporary. They are optional, as it is not decided yet, whether or not
to actually use and schedule them (see Section 2.3.3.2). Temporaries that are
copies of each other are copy related.

Second, up until here, instructions were said to use temporaries and com-
pute temporaries. This change is a generalization of that idea: instructions
use operands and define operands that can in turn be implemented by a tem-
porary. Operands can be implemented by a range of temporaries. By the in-
troduction of copy instructions, the operand used by an instruction can be
implemented either by the original temporary or by any copy related one. In
case that a copy instruction is inactive, its operands are not used and thus
implemented by a dummy temporary, the null temporary.

An example LSSA representation that includes these changes, is shown
in Figure 2.5. The function consists of three basic blocks, whereas each line
represents one instruction. For example, instruction i1 uses one operand p1,
which can be either implemented by the original temporary t0 or by a null
temporary, if the copy instruction is not used. The copy instruction itself can
be implemented by an operation. Example copy operations are move, load
or store operations. The notation p{. . . } : $r denotes that operand p is pre-
assigned to register r . Operand congruences are listed in the end. For exam-
ple, operand 19 in basic block b0 is congruent with operand 21 in basic block
b1. Therefore, the temporaries that implement both operands, are referring
to the same temporary. The instructions that are marked with (in) and (out)
are so called delimiters. Delimiters mark the entry and exit point to a basic
block. For instance, the in-delimiter i0 marks the entry to block b0 whereas
the out-delimiter i11 marks its end. All instructions within a basic block have
to be executed after the in-delimiter and before the out-delimiter. The issue
cycle of the out-delimiter is thus equivalent to the makespan of a basic block.

2.3.3 Constraint Model

This section presents the constraint model that captures instruction schedul-
ing and register allocation. It introduces the basic variables and constraints
that are used in order to solve the code generation problem. The constraint
model already contains some implied constraints, which will not be discussed

20



2.3. CONSTRAINT-BASED COMPILER BACK-END

b0:

i0: [p0{t0}:$4] <- (in) []

i1: [p2{-, t1}] <- {null, move, sw} [p1{-, t0}]

i2: [p3{t2}] <- addiuz [1]

i3: [p5{-, t3}] <- {null, move, sw} [p4{-, t2}]

i4: [p7{-, t4}] <- {null, move, lw} [p6{-, t0, t1}]

i5: [p9{t5}] <- slti [p8{t0, t1, t4, t8},1]

i6: [p11{-, t6}] <- {null, move, sw} [p10{-, t5}]

i7: [p13{-, t7}] <- {null, move, lw} [p12{-, t5, t6}]

i8: [p15{-, t8}] <- {null, move, lw} [p14{-, t0, t1}]

i9: [p17{-, t9}] <- {null, move, lw} [p16{-, t2, t3}]

i10: [] <- bnez [p18{t5, t6, t7},b2]

i11: [] <- (out) [p19{t0, t1, t4, t8},p20{t2, t3, t9}]

b1:

i12: [p21{t10},p22{t11}] <- (in) []

i13: [p24{-, t12}] <- {null, move, sw} [p23{-, t10}]

i14: [p26{-, t13}] <- {null, move, sw} [p25{-, t11}]

i15: [p28{-, t14}] <- {null, move, lw} [p27{-, t10, t12}]

i16: [p30{-, t15}] <- {null, move, lw} [p29{-, t11, t13}]

i17: [p33{t16}] <- mul [p31{t10, t12, t14, t18},p32{t11, t13, t15}]

i18: [p35{-, t17}] <- {null, move, sw} [p34{-, t16}]

i19: [p37{-, t18}] <- {null, move, lw} [p36{-, t10, t12}]

i20: [p39{t19}] <- addiu [p38{t10, t12, t14, t18},-1]

i21: [p41{-, t20}] <- {null, move, sw} [p40{-, t19}]

i22: [p43{-, t21}] <- {null, move, lw} [p42{-, t19, t20}]

i23: [p45{-, t22}] <- {null, move, lw} [p44{-, t16, t17}]

i24: [p47{-, t23}] <- {null, move, lw} [p46{-, t19, t20}]

i25: [] <- bgtz [p48{t19, t20, t21, t23},b1]

i26: [] <- (out) [p49{t16, t17, t22},p50{t19, t20, t21, t23}]

b2:

i27: [p51{t24}] <- (in) []

i28: [p53{-, t25}] <- {null, move, sw} [p52{-, t24}]

i29: [p55{-, t26}] <- {null, move, lw} [p54{-, t24, t25}]

i30: [] <- jra []

i31: [] <- (out) [p56{t24, t25, t26}:$2]

congruences:

p19 = p21, p20 = p22, p20 = p51, p49 = p22, p49 = p51, p50 = p21

prologue:

(...)

epilogue:

(...)

Figure 2.5: Factorial function in LSSA representation. Reprinted from [15].
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B , I ,P,T sets of blocks, instructions, operands and temporaries
ins(b) set of instructions of block b

tmp(b) set of temporaries defined and used within block b

operands(i ) set of operands defined and used by instruction i

definer(t ) instruction that defines temporary t

p ≡ q whether operands p and q are congruent
t⊲r whether temporary t is pre-assigned to register r

dist(i , j ,op) min. issue distance of instrs. i and j when i is imple-
mented by operation op

use(p) whether p is a use operand

temps(p) set of temporaries that can implement operand p

cdep set of control dependencies (i , j ) defined on two instruc-
tions i and j

freq(b) estimation of the execution frequency of block b

Table 2.1: Program parameters. Taken and adapted from [15].

further. For the complete model, see the paper by Castañeda et al. [16] and the
implementation notes [15]. The model described in the paper differs in some
details with the model used in the context of this thesis. Therefore, Appendix B
shows the base model version on which this thesis is based on.

In the following, relevant program and processor parameters are intro-
duced, which are used for formulating the constraints of the model for instruc-
tion scheduling (Section 2.3.3.1) and register allocation (Section 2.3.3.2).

The presented parameters and constraints are simplified for the sake of
clarity. Furthermore the thesis only introduces a subset of the model and its
parameters.
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O,R sets of processor operations and resources

operations(i ) set of operations that can implement instruction i

lat(op) latency of operation op

cap(r ) capacity of processor resource r

con(op,r ) consumption of processor resource r by operation op

dur(op,r ) duration of usage of processor resource r by operation
op

Table 2.2: Processor parameters. Taken from [15]

Program Parameters

Program parameters capture information on the program to compile, i.e. the
number of basic blocks, the instructions, the operations and so forth. Ta-
ble 2.1 lists a subset of program parameters that are used. The dist(i , j ,op) no-
tation is related to instruction scheduling. To recall, instruction precedences
can be based on data dependencies and control dependencies. Control de-
pendencies ensure the correctness of the program flow. If one instruction has
to precede a second instruction due to a control dependency, the latter can-
not start before a minimum number of instruction cycles has passed. This
distance is represented by the parameter dist(i , j ,op), which is related to each
control dependency (i , j ) defined in cdep. The last parameter, namely freq(b)
is an estimated frequency of a block b, which is used as a part of a quality
measure of a schedule, see Section 2.3.3.1. The frequency of a basic block is
estimated by analyzing loops: basic blocks that are deeply nested (surrounded
by several loops) are more likely to be executed more often than basic blocks
that are less nested.

Processor Parameters

Processor parameters represent values that are concerned with the processor:
the number operations (load, store, . . . ) that are defined for this architecture,
the number of existing resources for executing an instruction, the duration or
latency of an instruction and so forth. Table 2.2 lists the existing processor
parameters.

23



CHAPTER 2. BACKGROUND

oi ∈ operations(i ) operation that implements instruction i

ci ∈N0 issue cycle of instruction i relative to the beginning of
its block

tp ∈ temps(p) temporary that implements operand p

Table 2.3: Variables for modeling instruction scheduling. Taken from [15].

2.3.3.1 Constraint-based Instruction Scheduling

As mentioned in Section 2.1.1, an instruction is an entity of a program that can
be executed. With the execution of an instruction, an operation is performed.
Example operations are addition, subtraction, a load or a store. The instruc-
tion is said to be implemented by its operation. Which operations exist, are
defined by the target architecture for which the code is generated for. Within
this project, three groups of operation types are distinguished: arithmetic op-
erations (addition, . . . ), memory access operations (load, . . . ) and program
flow operations (jump, . . . ). The type of operation that implements an instruc-
tion, determines which resource is required for execution. In this implemen-
tation, the following resources are distinguished: Arithmetic Logic Unit (ALU),
which is responsible for arithmetic operations, Load/Store Unit (LSU), which
executes memory operations and Branching Unit (BU), which executes oper-
ations related to changes of the program flow. Each resource can only execute
one instruction at a time. On top of these three resources the model contains
a fourth resource that captures the idea of Very Long Instruction Word (VLIW)
processors. VLIW processors allow the execution of multiple instructions at
the same time. The instructions that are to be executed in parallel are packed
into a bundle. Still, resource requirements have to hold, i.e. there have to be
enough units of ALU, LSU and VLIW available in order to execute every in-
struction that is within the bundle. The size of the bundle determines how
many instructions can be processed in parallel.

Table 2.3 contains the constraint model variables that are used for model-
ing instruction scheduling.

Instruction scheduling has to assign an issue cycle ci to each each instruc-
tion i . These assignments have to be subject to data dependencies. The fol-
lowing constraint defines that for each instruction i and all the instructions it
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depends on, i can never start before the used value is defined:

tp = t =⇒ ci ≥ cdefiner(t ) + lat(odefiner(t ))

∀t ∈ temps(p), ∀p ∈ operands(i ) : use(p), ∀i ∈ I
(3.1)

So, for all of the used operands operands(i ), if the operand is implemented by
a temporary tp = t , then the instruction i can start earliest after the definer of
t ,definer(t ), is issued and the latency has passed. The latency is dependent
on the operation that implements the definer of t .

A similar constraint is added for control dependencies:

c j ≥ ci +dist(i , j ,oi ) ∀
(

i , j
)

∈ cdep (3.2)

For all control dependencies between two instructions i and j where i has
to precede j , instruction j cannot be executed until instruction i has been
executed and until a minimum number of additional cycles (the distance)
has passed. One example set of control dependencies is related to the out-
delimiter: all instructions that belong to a basic block have to be executed
before the respective out-delimiter.

Finally, instruction scheduling is subject to resource constraints. At no
issue cycle, the number of required resources may exceed the number of ex-
isting resources (the capacity cap(r )). If an instruction i uses a resource r ,
its consumption of r , i.e. con(oi ,r ) is greater than zero. For each available
resource r ∈ R, each basic block b ∈ B , the following constraint is added:

cumulative({〈ci ,dur(oi ,r ),con(oi ,r )〉:i∈ins(b)} ,cap(r )) ∀b∈B ,∀r∈R (3.3)

The cumulative constraint is a global constraint that incorporates smaller
constraints into one. In this context, the cumulative constraint ensures that at
each issue cycle ci the number of used resources r never exceed the capacity
cap(r ) of r . Figure 2.6 illustrates the effect of cumulative. Each instruction
can be viewed as a rectangle with a width (duration) and a height (consump-
tion of one resource r ). The x-axis denotes the issue cycles whereas the y axis
shows the consumption of a resource r by each instruction. The dashed line
illustrates the capacity of resource r and at no point the stacked rectangles are
allowed to cross the line.

In order to find optimal solutions, the quality of solutions has to be mea-
surable. Within this project, the objective is to minimize a function’s cost,
which depends on the makespan of each contained basic block. Retrieving
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Issue cycle

Resource consumption

Capacity

Figure 2.6: Illustration of a cumulative constraint and its effect for a given resource r .
Each instruction is represented as a rectangle that has a duration (width) and a resource
consumption (height). The x-axis corresponds to the issue cycle and the y-axis to the
consumption of resource r . At no point, the stacked rectangles (total consumption) are
allowed to exceed the capacity of resource r (dashed line)

the makespan of a basic block is trivial, as no jumps occur within a block: the
makespan of a basic block is equivalent to the issue cycle of its last to be ex-
ecuted instruction. The cost of a function is the weighted sum of each basic
block’s makespan:

minimize
∑

b∈B

freq(b)× max
i∈ins(b)

ci (3.4)

The frequencies freq(b) allow a more accurate computation of the cost. How-
ever, only estimated frequencies are used, as the frequency of a basic block
can depend on dynamic parameters.
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rt ∈N0 register to which temporary t is assigned

ai ∈ {0,1} whether instruction i is active

lt ∈ {0,1} whether temporary t is live

lst ∈N0 start of live range of temporary t

let ∈N0 end of live range of temporary t

Table 2.4: Variables for modeling register allocation. Taken from [15].

2.3.3.2 Constraint-based Register Allocation

The constraint model handles register allocation by adding optional (do not
necessarily have to be issued) copy instructions. A copy instruction simply
copies the value of one temporary to another temporary. The storage location
of these copy-related temporaries can differ. By introducing these optional
copies, the problem of deciding whether a temporary has to be spilled or not,
changes to the problem of deciding whether a copy instruction is active or
not. The decision which operation implements an instruction is made dur-
ing search. Depending on the operation, the temporary is either moved from
one register to another register or stored/loaded to/from memory. If a copy in-
struction is activated and if it copies the value of a temporary to memory, then
the temporary is spilled. The reason why a copy can also be implemented
by a move instruction, is that Mips32 defines and uses temporaries in regis-
ters. Therefore it has to be possible to move temporaries between registers.
For more information on copy instructions see [16]. One impact of introduc-
ing copy-related temporaries, is that instructions that depend on a temporary,
can either use the original temporary or any of its copy-related ones, as they all
contain the same value. In case the copy instruction is inactive, the operands
that are used and defined within the instruction, are implemented by a null
temporary.

The model variables for register allocation are listed in Table 2.4. As op-
tional instructions are incorporated in order to solve the register allocation
problem, instructions have the property of being active or inactive. Variable
ai denotes, whether an instruction i is active or not. An instruction that is ac-
tive has to be scheduled. If an instruction i is active and if instruction i defines
a temporary t , t is live:

adefiner(t ) ⇐⇒ lt ∀t ∈ T (3.5)
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A temporary t that is live has to implement an operand that is used by an
instruction, otherwise, the temporary would be dispensable:

lt ⇐⇒ ∃p : use(p)∧ tp = t ∀t ∈ T (3.6)

A live temporary has a live range that starts with the issue cycle of its definer.
Let T be the set of temporaries and lt the Boolean value, which is set to one if
t is live. For every t ∈ T , if lt = 1, then the following constraint enforces that
the start of a temporary’s live range l st is equivalent to the issue cycle of its
definer:

lt =⇒ lst = cdefiner(t ) ∀t ∈ T (3.7)

Registers can only store one temporary at a time. For all temporaries that have
overlapping live ranges and reside in a register, it has to be enforced that no
register is shared. A temporary’s live range starts at issue cycle l st and ends
at issue cycle let . For every temporary that is live (lt = 1), the following con-
straint enforces distinct live ranges for temporaries that are stored in the same
register:

disjoint2(
{

〈rt , lst , let , lt 〉 : t ∈ tmp(b)
}

) ∀b ∈ B (3.8)

The disjoint2 constraint makes sure that live ranges of temporaries do not
overlap as registers can only store one temporary at a time. Figure 2.7 shows
a valid assignment of temporaries to registers. Each rectangle corresponds
to one live temporary that resides in one out of the two registers. A rectan-
gle’s width represents the temporary’s live range. The disjoint2 constraint
enforces that for each register, rectangles cannot overlap, or else one register
would have to store multiple temporaries at the same issue cycle, which is
invalid.

For each pair of operands that is congruent (p ≡ q), the corresponding
temporaries tp that implement those operands have to reside in the same reg-
ister:

rtp = rtq ∀p, q ∈ P : p ≡ q (3.9)

For each pre-assignment p⊲r of an operand p to a register r , a pre-assignment
constraint enforces that the temporary tp that implements operand p will be
stored in the pre-assigned register:

rtp = r ∀p ∈ P : p⊲r (3.10)
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Issue cycleIssue cycle

Register

register 1

register 2

. . .

Figure 2.7: Illustration of a disjoint2 constraint and its effect for a set of temporaries
that are stored in registers. Each temporary that is live and is stored in a register is rep-
resented by a rectangle. The live range of a temporary corresponds to the width of a
rectangle. The x-axis denotes the issue cycle, while the y axis depicts which register a
temporary is stored in. The constraint ensures that no rectangles overlap.
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IMPLIED CONSTRAINTS

This chapter introduces implied constraints that are investigated in the con-
text of the constraint-based compiler back-end. In order to find implied con-
straints, a top-down approach was chosen: the constraints were elaborated
on existing literature.

The predecessor and successor constraints address precedences among in-
structions and are described in Section 3.1. In Section 3.2 copy activation

constraints are introduced, which enforce a number of optional copy instruc-
tions of a temporary to be active. Finally, Section 3.3 presents the nogood

constraints that detect infeasible partial assignments of subsets of variables,
which can be used to avoid dead-ends during search.

3.1 Predecessor and Successor Constraints

In [18], Malik et al. present a constraint model for solving instruction schedul-
ing on a multiple-issue processor. They accomplish to solve more realistic
problems amongst others by adding a number of implied constraints to their
basic model. One idea they introduce are the predecessor and successor con-

straints.
The predecessor constraints and their symmetric successor constraints

are based on the correlation between an instruction i and its immediate pre-
decessors/successors. If an instruction i depends on the temporary that is
defined by another instruction j , j is referred to as an immediate predecessor
of i . Respectively, i is an immediate successor of j . The reasoning behind the
predecessor constraints is the following: If an instruction i has a set of imme-
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diate predecessors pred(i ), it can only be scheduled as soon as all predecessors

j ∈ pred(i ) complete execution. This implies that each instruction j ∈ pred(i )
has consumed a resource without conflicting with any other predecessors’ re-
source requirements. Malik et al. assume a unit duration for all instructions,
i.e. dur(i ) = 1 ∀i ∈ I . Predecessor constraints are added for each type of func-
tional unit r and each subset of P ∈ pred(i ) that consumes r if the total con-
sumption exceeds the capacity of a resource r, |P | > cap(r ):

lower(ci ) ≥ min{lower(c j ) | j ∈ P }

+
⌈

|P |/cap(r )
⌉

−1

+min{lat( j ) | j ∈ P }

In other words, the earliest possible issue cycle of i is dependent on four fac-
tors:

1. the earliest possible start time of a predecessor in P ,

2. the number of cycles |P | needed to issue all instructions in P ,

3. the maximum duration of all instructions in P (which is one), and

4. the minimum latency between a predecessor and instruction i .

Both term one and two of the equation are self explanatory. The last two terms
relate to the last to be executed predecessor jl ast . Instruction i depends on
the result produced by jl ast , thus it cannot be executed before the result is
available (latency), but before jl ast finishes execution (duration). As it is not
known yet, which predecessor will be the last one to be executed, the maxi-
mum duration is subtracted (third term) and the minimum latency is added
(fourth term).

At this stage, the presented predecessor constraint assumes that all in-
structions have a duration of one. The constraint model in this project, how-
ever, supports instructions that may have a duration of more than one. In
order to adapt the predecessor constraints, the notion of varying duration has
to be captured. Instead of adding a predecessor constraint for every subset P

for which the absolute number of predecessors |P | is greater than the capacity,
the adapted predecessor constraints are added if the total usage of a resource
r is exceeded:

∑

j∈P

dur( j ,r )∗con( j ,r ) > cap(r )
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The term dur( j ,r )∗con( j ,r ) describes the total number of issue cycles that a
predecessor j ∈ P requires in order to finish execution and thus the time in
which resource r is occupied. If the total sum exceeds the capacity cap(r ), the
following adapted predecessor constraint is added:

lower(ci ) ≥ min{lower(c j ) | j ∈ P }

+

È

Ì

Ì

Ì

Ì

∑

j∈P
dur( j ,r )∗con( j ,r )

cap(r )

É

Í

Í

Í

Í

−max{dur( j ,r ) | j ∈ P }

+min{lat( j ) | j ∈ P }

(1.1)

Since the duration is taken into consideration, |P | changes to dur( j ,r )∗con( j ,r )
and the previous subtracted maximum duration of 1 is now max{dur( j ,r ) | j ∈

P }. As before, the last to be executed predecessor’s duration does not play a
role, but rather its latency. For dur( j ,r ) = 1 and con( j ,r ) = 1 the extended
predecessor constraint is equivalent to the one defined in [18].

Likewise, the symmetric version of the predecessor constraints in [18], i.e. the
successor constraints, can be adapted. For each resource type r and each sub-
set P of succ(i ) with

∑

j∈P
dur( j ,r )∗con( j ,r ) > cap(r ), a successor constraint is

added to the model:

upper(ci ) ≤ max{upper(c j ) | j ∈ S}

−

È

Ì

Ì

Ì

Ì

∑

j∈S
dur( j ,r )∗con( j ,r )

cap(r )

É

Í

Í

Í

Í

+max{dur( j ,r ) | j ∈ S}

−min{lat( j ) | j ∈ S}

(1.2)

Example 3.1.1. Figure 3.1 shows an example result of enforcing predeces-
sor constraints for an arbitrary instruction x and its immediate predecessors.
Nodes represent instructions and edges define given data dependencies be-
tween two nodes. The node color defines which kind of functional unit an in-
struction’s operation consumes. Thus, if two instructions have the same color,
they are executed by the same functional unit. Each instruction is defined by
its issue cycle domain ci = [a,b] and its resource consumption duration and
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A

[1 , 6]

B

[1 , 5]

C

[0 , 5]

D

[0 , 4]

x

[3 , 8] ⇒ [6 , 8]

(2,2)

(2,2)

(3,2)

(1,1)

Figure 3.1: Example of lower bound improvement achieved by enforcing predecessor
constraints. [a,b] represents the issue cycle domain of an instruction, whereas the pair
(dur, lat) denote its duration and latency.

latency (dur, lat). Assume that only one functional unit is available for each
type of resource r . In this example only two kind of resources are involved,
whereas nodes of the same color consume the same resource. The consump-
tion of each instruction for any resource is 1, i.e. con(i ,r ) = 1 ∀i ∀r . For the
subset P = {A,B ,C } the following applies: lower(x) ≤ 0+ 7

1−3+2 = 6. As a result,
the lower bound of x can be increased. Note that no predecessor constraint
involves the instruction D , as the total usage caused by D does not exceed the
resource capacity.

3.1.1 Notes

Within the scope of this thesis, the presented predecessor and successor con-
straints only consider data dependencies and no control dependencies. It should
be no fundamental obstacle to incorporate control dependencies. However,
further study would be required and due to time reasons, the analysis of con-
trol dependencies for these constraints are left out.

3.1.2 Propagation

Predecessor constraints are added for all possible subsets of an instruction’s
predecessor set for which the total usage exceeds the resource’s capacity. Hence,
in worst case an exponential number of constraints is added. Malik et al. [18]
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propose a heuristic that adds a total of O
(

|I |2
)

constraints instead, with |I | be-
ing the total number of instructions. For each instruction i , the set of prede-
cessors pred(i ) is sorted in the order of each predecessor’s lower bound. Next,
a constraint is added for the whole set of predecessors. Then, the first prede-
cessor is removed and a constraint is added for the remaining ones. Continue
until only one predecessor is left. In other words, only one constraint is added
for each subset size of |P |. Since only a number of subsets is considered, it is
desirable to pick the most effective ones. By removing the approximate ear-
liest instruction, the heuristic aims at a high value for min{lower( j ) | j ∈ P },
which sets the baseline for how many values can be pruned from an instruc-
tion’s domain.

The approach of sorting the instructions according to their lower bound is
not appropriate for the constraint model in focus. At the time when predeces-
sor constraints are generated, the lower bounds of all instructions are equiv-
alent. Still, a similar approach can be applied: instead of sorting by lower
bound, pred(i ) can be sorted by the number of predecessor of each prede-
cessor, i.e. pred(pred(i )). Given two predecessors j and k with

∣

∣pred( j )
∣

∣ >=
∣

∣pred(k)
∣

∣, the new heuristic assumes that j is more likely to be executed af-
ter k. Combining this ordering with the approach in [18], only a number of
predecessor constraints is added to the model.

3.2 Copy Activation Constraints

Copy activation constraints address both register allocation and instruction
scheduling. The following constraints are investigated and developed on the
basic idea of Dependency Graph Transformations formulated in [15].

Architectural constraints and the Application Binary Interface (ABI) cause
pre-assignments of operands to registers [16]. Temporaries that implement
a pre-assigned operand have thus to be stored in a specific register. In this
case, the temporary is also said to be pre-assigned. If two live temporaries are
assigned to the same register, conflicts might occur, in which one temporary
is overwritten by the other. In order to avoid live values to be overwritten,
optional copy instructions can be activated. The constraints enforcing copy
instructions to be active are the copy activation constraints.

Duration and latency values are irrelevant for the analysis in focus. Hence,
the dependency graphs in this chapter do not differentiate between instruc-
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A

B

C

.. .

. . .

ti ⊲r

t j ⊲r

(a) Pre-assignment conflict due to
multiple assignments to register r .

A

B

C

CPY tc = ti

copy related: {ti , tc }

. . .

. . .

ti ⊲r

tc

t j ⊲r

(b) Conflict resolved by enforcing the
activation of a copy instruction.

Figure 3.2: Overwrite conflict due to a defined temporary pre-assignment

tions that consume distinct resources. In the following, a copy instruction is
labeled as "CPY".

3.2.1 Pre-assignment Conflicts

Figure 3.2a illustrates an example case of an overwrite conflict based on regis-
ter pre-assignments. A pre-assignment of a variable t to a register r is denoted
as t⊲r. The graph shows three major instructions: A,B and C , whereas instruc-
tion C (directly or indirectly) depends on the execution of A and B . The over-
write conflict exists, as both instructions A and B are defining temporaries
that overlap in their live range and which are pre-assigned to the same reg-
ister r . In order to resolve the conflict, a copy instruction can be activated.
Consider Figure 3.2b: here, a copy instruction is activated, which copies the
value of ti into a temporary tc . Instruction C can now use the copy related tem-
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A

B

C ti ⊲r

. . .

. . .

ti

t j ⊲r

(a) Pre-assignment conflict due to
multiple assignments to register r .

A

B

C {tc , . . .}⊲r

CPY tc = ti

copy related: {ti , tc }

. . .

. . .

ti

tc⊲r

t j ⊲r

(b) Conflict resolved by enforcing the
activation of a copy instruction.

Figure 3.3: Use conflict due to a used temporary pre-assignment

porary tc , which resides in a distinct storage location than ti . Hence, defining
t j in register r does not result in a conflict anymore, yet both pre-assignments
are respected. Note that the activated copy instruction has to precede the exe-
cution of B , otherwise the conflict would still occur. This type of conflict case
will be referred to as overwrite conflict.

Figure 3.3a shows a similar scenario. Again, the three main instructions
involved are referred to as A, B and C . The main difference between the previ-
ous example and this example is the type of pre-assignment: while instruction
A defines temporary ti without specifying where to store it, instruction C ex-
pects the value of ti to reside in register r as soon as it starts execution. The
obvious way of respecting this pre-assignment is to store ti in r . However, in
this case ti would be overwritten by temporary t j , which is pre-assigned to the
same register and defined by instruction B . Both pre-assignments defined by
instruction B and C have to be satisfied. This can be accomplished by activat-
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ing a copy instruction after the execution of instruction B : first instruction B

defines t j to be stored in register r ; afterward a copy instruction copies tem-
porary ti into register r , see Figure 3.3b. This way, both pre-assignments do
not conflict with each other. This type of conflict case will be referred to as use

conflict.

3.2.2 Formulation

The previous section introduced two types of conflicts that can occur due
to pre-assignments. By combining the information gathered from both over-
write and use conflicts, one can deduce the total number of mandatory copy

instructions that have to be active for each temporary.
A temporary that is affected by multiple overwrite conflicts within one

path of the dependency graph, only needs to be copied to another storage
location once, i.e. before the first instruction in this path that causes an over-
write conflict. If the temporary already resides in another location, all the fol-
lowing overwrite conflicts are resolved. The same applies to use conflicts: a
temporary needs to be copied to the pre-assigned storage location only once,
namely after the last instruction in a path that causes a use conflict.

If a temporary pre-assignment is conflicting in several separate paths of
a dependency graph, it still needs to be copied over only once in order to be
saved for all paths. In this case, however, it is not known beforehand which in-
struction is the first or last one to cause the conflict (as they are not connected
by any dependency edge).

Combining the extracted knowledge from both cases, the total number of
mandatory copy instructions for one temporary can be summed up. If for a
given path only one out of the two possible conflicts occurs, the number of
mandatory copy instructions remains one. If however pre-assignments cause
both types of conflicts within one path of the dependency graph, the num-
ber of mandatory copy instructions concerning a temporary might sum up
to two. Let i → j denote that j is reachable from i in a given path. Assume
furthermore that the two instructions i and j are both involved in a distinct
pre-assignment conflict concerning temporary t and that i → j without loss
of generality. Then, the total number of mandatory copy instructions for tem-
porary t is:

• one, if a copy is required after i and before j , and

• two, if a copy is required before i and after j .
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It is not required that i 6= j . One instruction alone can cause an overwrite and
use conflict at the same time, so that two copy instructions are required to be
active. One example is a call instruction that pre-assigns used temporaries as
well as defined temporaries:

[p2{t1}:$15] <- jalra [p1{t0}:$25]

The example function call instruction uses temporary t0 in register $25 and
computes a temporary t1 that is pre-assigned to register $15. For example,
requiring that t0 has to reside in register $25 can overwrite a temporary that is
already stored in that register (overwrite conflict) and defining a temporary to
be in register $15 might conflict with a following instruction that uses another
temporary in register $15 (use conflict).

The final number of required copy instructions of a temporary t is the max-
imum number of mandatory copy instructions that could be found among all
paths. Let ai denote that copy instruction i is active and thus has to be sched-
uled. For each temporary t , the set of copy instructions C that copy t to an-
other location and a number n = {1,2} of mandatory copy instructions, add a
copy activation constraint:

∑

i∈C

ai ≥ n (2.3)

In other words, at least n copy instructions have to be active for a correct pro-
gram flow. More copy instructions may be activated during search.

3.2.3 Notes

Apart from the main constraint in Equation 2.3, another minor constraint can
be formulated using the information gained from the copy activation analy-
sis. It relates to the issue cycle of the out-delimiter, i.e. the makespan. By
considering the number of mandatory copy instructions and the number of
already known to be issued instructions, one can impose a lower bound con-
straint on the makespan. The makespan cannot be less than the number of
issue cycles required for executing all these obligatory instructions. As it is
unknown beforehand, which operation is going to implement a copy instruc-
tion, it is neither decided which resource is consumed nor how much of it is
consumed. All the instructions can nevertheless be used in order to compute
a minimum makespan: every instruction uses a part of the bundle rbundle ,
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which defines, how many instructions can be issued at the same time. Calcu-
lating the total consumption in relation to rbundle and assuming that all copy
instructions are implemented by the copy operation that consumes the least
of rbundle , one can formulate a conservative constraint on the lower bound
of the makespan. For a set of mandatory instructions M that includes both
mandatory copy instructions and obligatory instructions, post the following
minimum makespan constraint:

lower(cout ) ≥

È

Ì

Ì

Ì

Ì

∑

j∈M
con( j ,rbundle )

cap(rbundle )

É

Í

Í

Í

Í

(2.4)

In Equation 2.4 the total consumption does not include the notion of du-
ration, even if including the duration as done for the predecessor and suc-
cessor constraints would improve the minimum makespan computed. The
reason for assuming a unit duration is the current implementation and in-
terpretation of the out-delimiter. In the base model, the out-delimiter deter-
mines the overall makespan. The problem is that the out-delimiter does not
wait until the last instruction finishes using a resource. Changing the min-
imum makespan constraint to include varying durations would enforce the
out-delimiter to also wait for the last instruction to finish execution. This dif-
ference in makespan would confuse the evaluation, as the base model would
find a better makespan than the one with copy activation constraints. As the
focus of this thesis lies on optimal basic block scheduling, it does not mat-
ter whether the out-delimiter waits for the last instruction to finish using a
resource or not. However, this might lead to problems if complete functions
consisting of multiple basic blocks were to solve. In that case, it might not be
guaranteed that with the start of a basic block all resources are free to use, if
the previous out-delimiter ended before all resources finished execution.

In Chapter 5, Equation 2.3 and Equation 2.4 are evaluated as one, as the
latter uses the result of the copy activation analysis.

3.3 Nogood Constraints

Nogoods describe assignments to a subset of problem variables that cannot
be extended to become a solution. Thus, any partial assignment that contains
a nogood will always result in a failed node. This can lead to thrashing, i.e. the
repeated exploration of similar infeasible partial assignments, as dead-ends
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within a search tree are not recognized as such. Nogoods are usually recorded
during backtracking search: if infeasible decisions lead to a failure, these de-
cisions are recorded as a nogood in the hope that future dead-ends are dis-
covered on time. Beek [26] gives an overview on nogood recording during
backtracking search.

This project presents a static approach of finding nogoods for the code
generation problem on hand. The general idea is to analyze a subset of prob-
lem variables, their domains and relations among each other, prior to solving
the complete code generation problem using CP. A nogood is thereby formu-
lated as a conjunction of unit nogoods, i.e. nogoods of the form x = 3. Any no-
good that is found during the analysis can be avoided during search by adding
a corresponding constraint to the constraint model.

The nogoods that are to be detected are related to the subset of variables
that determine operand-temporary assignments. Section 3.3.1 describes the
problem and introduces the methodology that is used in Section 3.3.2 and
Section 3.3.3 for detecting nogoods.

3.3.1 Nogoods and the Boolean Satisfiability Problem

The sub-problem in focus is the task of deciding which temporary should im-
plement an operand. Operands may be pre-assigned to registers, so that the
temporary implementing that operand has to be stored in that register. By
assigning a temporary to an operand, possible contradictions on the basis of
pre-assignments can occur. Consider the following simplistic example of a
nogood caused by an operand-temporary assignment. Given a temporary t ,
registers r,k and two operands p, q whereas p⊲r, q⊲k. Both p and q can be
implemented by t or any copy-related temporary. However, defining that t im-
plements both is invalid, as it implies that t should reside in register r and in k

at the same time, which conflicts with the requirement that t can only reside
in one register, if at all. By capturing existing operand-temporary relations,
given pre-assignments and congruences, one can formulate a system of equa-
tions that has to be satisfied. If adding a new operand-temporary assignments
leads to a contradiction within the system, a nogood is found. Carlsson [3]
proposes this idea of nogoods arising from operand-temporary assignments.

The system of equations can by implemented by using a variety of method-
ologies. For instance, it can be viewed as a CP problem, in which assign-
ments made that lead to a failed node are recorded as nogoods. In the context
of this thesis, the system of equations is modeled as a Boolean Satisfiability
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(SAT) problem instance. SAT describes the problem of determining whether a
Boolean formula is satisfiable, i.e. if Boolean value assignments exist, so that
the formula evaluates to true. A Boolean formula consists of a set of liter-

als (Boolean variables x or their negation ¬x), which are connected by con-
junctions (AND) and disjunctions (OR). For example, consider the Boolean
formula x ∧¬y . The formula is satisfiable, as by assigning x = 1 and y = 0,
it evaluates to true. Usually, a Boolean formula is written as conjunctions of
disjunctions (clauses). Let ci j be a literal in clause i with index j , then the
Conjunctive Normal Form (CNF) representation of a formula is written as:

∧

i

∨

j

ci j

SAT is an NP-complete problem [7]. Therefore algorithms for SAT run in
exponential worst case time. Nevertheless, improvements within the field of
SAT solvers motivated its increased application [19]: Marques-Silva [19] gives
an overview on well-known as well as successful applications of SAT solvers.
However, using a SAT solver as in Section 3.3.2 for nogood detection, will not
result in a solution qualified for real-world applications. The complexity will
be discussed in Chapter 5. As the focus of this thesis is to evaluate the impact
of implied constraints, the runtime of generating those constraints plays a mi-
nor role. Thus, the choice of viewing the problem as a SAT instance and to
solve it with an existing SAT solver, provides a systematic approach of finding
nogoods while using a well-known SAT solver (see Chapter 4).

3.3.2 The SAT-based Model

This section introduces the variables and Boolean formulas for modeling the
operand-temporary assignment sub-problem. The following model is based
on a sketch proposed by Carlsson [3]. For the final implementation, minor
modifications were made.

Parameters

The parameters used for formulating the SAT instance for nogood detection
are shown in Table 3.1. They are part of the program parameters introduced
in Section 2.3.3.
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P The set of parameters

T The set of temporaries

R The set of registers

operands(i ) set of operands defined and used by instruction i

use(p) whether p is a use operand

temps(p) set of temporaries that can implement operand p

p ≡ q whether operands p and q are congruent

p⊲r whether operand p is pre-assigned to register r

Table 3.1: Nogood detection parameters.

Tpt Temporary t implements operand p

Rpr Operand p is assigned to register r

Ppq Operand p and q share a register

Table 3.2: Nogood detection variables.

Variables

Table 3.2 lists the variables that are used for nogood detection. For each operand
p and each temporary t that can implement p, Tpt encodes whether tempo-
rary t implements operand p. Hence, if Tpt = 1, operand p is implemented
by t , otherwise not. Similarly, for each existing register and each operand p

a variable Rpr expresses that operand p is assigned to register r . Finally, for
each pair of operands p and q , variable Ppq denotes that both operands share
the same register.
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The Constraints

In the following, each constraint is presented, followed by an equivalent for-
mulation as a Boolean formula. The final Boolean formula that represents the
system of equations is a conjunction of all presented formulas. For a more
compact representation, implications are written as a → b, which is a shorter
version of ¬a ∨b.

The first two constraints ensure the correctness of the base problem: each
operand can only be implemented by one temporary and reside in maximum
one register (if not stored in register, it is stored in main memory).

one temporary: each operand has to be implemented by exactly one tempo-
rary.

exactlyOne(Tpt ) ∀p ∈ P (3.5)

at most one register: each operand can reside in only one register, if at all.

atMostOne(Rpt ) ∀p ∈ P (3.6)

The at-most-one constraint is implemented as described in [19]. For n vari-
ables, it uses n − 1 auxiliary variables in order to express the constraint. By
combining the at-most-one constraint with an at-least one constraint, one
can model the exactly-one constraint [19]. The at-least-one constraint for vari-
ables xi can be expressed with the following clause:

∨

i
xi

Some operands are already defined to share the same register and/or to re-
side in a specific register. These assignments are known to be true, therefore
the corresponding variables are set:

congruences: congruent operands reside in the same register.

Ppq ∀p, q ∈ P : p ≡ q (3.7)

pre-assignments: A pre-assigned operand has to reside in the corresponding
register.

Rpr ∀p ∈ P : p⊲r (3.8)
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The following constraints provide rules to conclude assignments on a sub-
set of variables if a premise is fulfilled. By defining a new operand-temporary
assignment, multiple of these premises may become true, so that new variable-
value assignments are deduced that might conflict with already existing ones:

shared register transitivity: If an operand q shares a register with p and with
s, operands p and s also share a register.

Ppq ∧Pqs → Pps ∀p, q, s ∈ P (3.9)

implied register assignment: If two operands are congruent and one operand
is stored in a register, the other operand has to reside in the same register..

Ppq ∧Rpr → Rqr ∀r ∈ R, ∀p, q ∈ P (3.10)

implied shared register: If two operands reside in the same register, they
share a register.

Rpr ∧Rqr → Ppq ∀r ∈ R, ∀p, q ∈ P (3.11)

distinct use registers: Each two pair of use operands within one instruction
that do not share temporaries, have to reside in distinct registers, as they are
live at the same time.

¬Ppq ∀i ∈ I ,

∀p, q ∈ operands(i ) :

use(p)∧use(q)∧ temps(p)∩ temps(q) =;

(3.12)

distinct define registers: Each two pair of defined operands within one in-
struction that do not share temporaries, have to reside in distinct registers, as
they are live at the same time.

¬Ppq ∀i ∈ I ,

∀p, q ∈ operands(i ) :

¬use(p)∧¬use(q)

(3.13)

effective copy: In a copy instruction, the defined and used operand have to
reside in different registers.

¬Psrc(i )dst(i ) ∀i ∈ I : type(i ) = copy, (3.14)

where
src(i ) = p : p ∈ operands(i )∧use(p)

dst(i ) = p : p ∈ operands(i )∧¬use(p)
(3.15)
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3.3.3 Detecting Nogoods

Nogoods are found by adding clauses representing operand-temporary as-
signments. By adding a clause Tpt , one makes the assumption that a tempo-
rary t implements an operand p. If the new assumption causes the formula to
become unsatisfiable, a nogood is found. Nogoods can consist of one or mul-
tiple operand-temporary assignments that are expressed by conjunctions of
assumptions Tpt . Within this project, only unit and binary nogoods are con-
sidered, as the search for ternary nogoods using this approach takes too much
time.

The number of combinations of operand-temporary assignment grows
with the number of operands and thus with the number of instructions. If
computing unit nogoods, one has to consider O

(

|P | ∗ |T |
)

possible assump-
tions: one assumption for each pair of an operand p and temporary t ∈ temps(p).
For binary nogoods, there are already O

(

(|P | ∗ |T |)2
)

combinations to test. In
any case, not all possible assumptions are necessarily reasonable. Only as-
sumptions that might allow further conclusions on the system of equations
should be considered. Otherwise, no conflict will be caused. An example for
an assumption that is superfluous to consider if added alone is the follow-
ing: consider an operand pc that is defined by an optional copy instruction.
Operands that are defined by a copy instruction may be implemented by the
null temporary or by a real temporary tc . An assumption Tpc tc won’t cause
any further conclusions if added alone, as the temporary tc is neither used by
any other instruction nor does it pre-assign operand pc to any register. Thus,
the total amount of tested assumptions can be reduced. In the following, the
thesis describes the design choices and the incremental search used for pre-
venting unnecessary checks of assumptions.

No null temporary implementation: As the assignment of any operand to a
null temporary will not affect any other operand-temporary assignment, the
model only considers Boolean variables Tpt , for which t 6= null . This has the
effect that all optional copy instructions are assumed to be active (as the de-
fined operand is not implemented by a null temporary).

Assumption only made for not yet assigned operands: Some operands can
only be implemented by one temporary. Consequently there is no need to add
an assumption for those operands.
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Incremental search for nogoods: A nogood n1 subsumes a nogood n2, iff n1

is a subset of n2. In order to avoid adding subsumed nogoods, assumptions
are tested incrementally. First, unit assumptions are made. Only if the result-
ing Boolean formula is still satisfiable, that assumption is recorded. For the
generation of binary assumptions, the recorded unit assumptions are paired
up.

Add unit assumptions only if they concern mandatory operands: The deci-
sion of which temporary shall implement an operand in an optional copy in-
struction is not of interest, as it does not affect any other operand-temporary
assignment, if added alone. Thus, in terms of unit assumptions, the focus lies
only on mandatory operands (operands that are used/defined by a manda-
tory instruction).

Add unit assumptions only for a subset of temporaries: Given a mandatory
operand p, p can be implemented by any t ∈ temps(p). In order for a unit
assumption to introduce a conflict, it has to bring in new information on
operand-register assignments. Assume that the temporary, which was defined
originally, is pre-assigned to a register, i.e. to⊲r. Then, a temporary tc that is a
direct copy of to cannot reside in r (Equation 3.14). For all other copy-related
temporaries that can either copy to (in r ) or tc (not in r ), it is not possible to
deduce knowledge on where they might reside. Thus, for a given mandatory
operand p, it is only relevant to consider the original temporary to or its direct
copy tc .

Binary assumption only made if at least one mandatory operand is involved:
Adding assumptions on operands of copy instructions only will not lead to any
conflict. Thus, at least one mandatory operand has to be considered.

Binary assumption only added if both operands are related: When consider-
ing binary assumptions, the combined assumption can only have an effect, if
they are related. Otherwise, adding both assumptions is equivalent to adding
them separately and in this case it is already known that these operands in iso-
lation will not cause a conflict (incremental search). Let mandatory(p) denote
that operand p is part of a mandatory instruction. In this thesis, two operands
p and q are related if:

1. both are mandatory and may be implemented by the same temporary:
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mandatory(p)∧mandatory(q)∧ temps(p)∩ temps(q) 6= ;,

2. both are mandatory use operands and belong to the same instruction:
mandatory(p)∧mandatory(q)∧∃i : p, q ∈ use(i ), and

3. one is mandatory and it uses a temporary that is the result of copying
over the temporary that implements the other operand:
w.l.o.g mandatory(p)∧¬mandatory(q)∧q = src(i ) : Tpt ∧Tdst(i )t .

Regarding the last point, note that only use operands of a copy instruction are
yet undefined: by ignoring null temporaries, each defined operand of a copy
instruction is already implemented by a temporary.

Binary assumptions only added for a subset of temporaries: An obligatory
operand can be implemented by a temporary to (the known to be active, origi-
nal temporary), a copy-related temporary tc that directly copies over to , or any
other temporary ti whose copy source is either to or tc . From the viewpoint of
this model, all temporaries of the latter kind are equivalent as they have the
same copy source options, even if they are not the same in the original con-
straint model. Any nogood that contains the temporary ti can be translated
to a nogood for any other copy-related temporary that has t0 and tc as a copy
source. Hence, instead of considering all equivalent temporaries, the thesis
only focuses on one representative of this group of copy related temporaries.

By this adaptions the amount of generated assumptions can be reduced.
Nevertheless, the complexity can only be reduced by a constant. Chapter 4
will present the SAT solver used within this project and Chapter 5 will analyze
the runtime of the nogood detection.

3.3.4 Formulation

A nogood consists of a set of operand-temporary assignments tp = t , which to-
gether form an infeasible partial assignment if all become true. For each such
nogood of size n = {1,2} (unit and binary nogoods), let B with |B | = n be the
set of Boolean variables so that bi ⇐⇒ tpi

= ti ∀i ∈ {1 . . .n}. Then, a nogood

constraint is added:

∑

i

bi < n (3.16)
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4
IMPLEMENTATION

The implementation is separated into a pre-processing and a constraint gen-
eration part. The pre-processing for predecessor, successor and copy activa-
tion constraints involves the construction and analysis of a dependency graph
containing both data dependencies and control dependencies. Based on the
results of the graph analysis, the implied constraints are generated and added
to the constraint model. As the graph pre-processing is a part of the existing
modeler module written in Haskell, Haskell is the natural language of choice.
The pre-processing for nogood generation is written in C++. It uses the SAT
solver MiniSat 2.2.0 [22, 23] as a native library and is part of a pre-processing
within the solver itself. Similarly, C++ is used for constraint generation since
the existing solver is written in C++. It uses the open source toolkit Gecode
3.7.3 [25] for the development of constraint-based systems. The following sec-
tion outlines the structure of the constructed dependency graph and the ap-
proach for detecting nogoods using MiniSat. It furthermore describes how
the information for adding the implied constraints from Chapter 3 can be ob-
tained.

4.1 Dependency Graph

The dependency graph that is constructed contains only edges among manda-

tory instructions and thus does not consider precedences among optional copy
instructions. Edges can relate to data dependencies or control dependencies.
An example dependency graph of one block contained in an actual test func-
tion is shown in Figure 4.1. Solid edges represent data dependency edges.
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in

slti addiuz

bnez

out

t8 → r4

t19

t21

t0 → r16, t1 → r17,
t2 → r18, t3 → r19,
t4 → r20, t5 → r21,
t6 → r22, t7 → r23,
t8 → r3

Figure 4.1: An example dependency graph containing data and control dependencies.

Each data dependency edge is labeled with the temporary the successor is
dependent on. All dashed edges are control edges. Some pair of nodes might
have both control and dependency edges. The dependency graph is constructed
using the Haskell Functional Graph Library package version 5.4.2.4 [10].

For the predecessor and successor constraints it is required to extract the
immediate predecessor and successor instructions for each node. As these
constraints only apply to data dependencies, only those instructions that are
connected by a data dependency edge are considered. Extracting predeces-
sor and successor constraints is accomplished by extracting all incoming and
outgoing data dependency edges for a node. These edges contain the infor-
mation on the immediate predecessors and successors. The implementation
uses the corresponding inn and out functions of the library.

Everything else (latency, duration, capacity and consumption) is already
available to the solver. The implementation of the subset selection follows
directly from Section 3.1.2. In order to add copy activation constraints, the
solver requires information on the number of mandatory copy instructions
for a given set of copy instructions (if applicable). This can be extracted by a
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graph analysis that will be described in the following section.

4.1.1 Graph Analysis

The graph analysis concerns the detection of overwrite and use conflicts as
described in Section 3.2. A simplified version of the algorithm is listed in
Algorithm 4.1, which uses two procedures for collecting the conflicts: Proce-
dure extractOverwriteConflicts is used for overwrite conflicts, whereas Proce-
dure extractUseConflicts detects use conflicts. Detecting overwrite conflicts
starts off with extracting all instructions that define pre-assigned temporaries
in Line 1. For each instruction, the pre-assigned temporaries and registers are
obtained in Line 2 and Line 3. Now, for each path that starts at the given in-
struction, conflicts are detected that occur along that path. A conflict exists if
any instruction along that path uses the same registers as the ones obtained
before. The result of the analysis in Line 5 is a collection of conflict tuples that
describe a conflict by:

1. the instruction that causes the conflict,

2. the temporary that has to be copied, and

3. the time, when a copy instruction has to be active.

The time is specified in relation to the instruction that causes the conflict.
Therefore, a copy instruction has to be active either before or after the conflict-
ing instruction is issued. Extracting use conflicts is processed in a symmetric
way, see Procedure extractUseConflicts. The analysis of overwrite and use con-
flicts has a complexity of O

(

|I |∗|IP |∗rm

)

, with IP being the set of instructions
that contain pre-assignments, rm being the number of machine registers and
|IP |≪ |I |. The number of instructions contained in IP is considerably smaller
than the number of instructions contained in I , as a large number of instruc-
tions are optional copy instructions that do not have any pre-assignments.

The conflict tuples of both analyses are combined in Algorithm 4.1. In
Line 4, stricter conflicts are filtered: for each path at most one overwrite con-
flict tuple and at most one use conflict tuple has to be kept, as suggested
in Section 3.2.2. It is only necessary to copy once before the earliest over-
write conflict and once after the latest use conflict. Line 5 computes the num-
ber of mandatory copy instructions for each temporary as described in Sec-
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Procedure extractOverwriteConflicts(graph)

Input: Dependency graph
Output: Collection of overwrite conflict tuples

1 foreach instruction that defines pre-assigned temporaries do

2 temps ← definedTemporaries;
3 regs ← assignedRegisters;
4 foreach path starting from instruction do

5 〈instr,temporary,time〉 ← findConflictingUsages(temps,

regs);
6 append(conflicts, 〈instr,temporary,time〉);

7 end

8 end

9 return conflicts;

Procedure extractUseConflicts(graph)

Input: Dependency graph
Output: Collection of use conflict tuples

1 foreach instruction that uses pre-assigned temporaries do

2 temps ← usedTemporaries;
3 regs ← assignedRegisters;
4 foreach path ending at instruction do

5 〈instr,temporary,time〉 ← findConflictingUsages(temps,

regs);
6 append(conflicts, 〈instr,temporary,time〉);

7 return conflicts;
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tion 3.2.2. Afterward, the copy instructions corresponding to those tempo-
raries that have to be copied are extracted. Finally, a set of copy instructions
and the number of mandatory copies among them is returned.

Algorithm 4.1: Extracting copy instructions and the corresponding num-
ber of mandatory copies

Input: Dependency graph
Output: Copy instructions and the corresponding number of

mandatory ones
1 use ← extractUseConflicts(graph);
2 overwrite ← extractOverwriteConflicts(graph);
3 conflicts ← use + overwrite;
4 conflicts ← reduceToStrictestConflicts(conflicts);
5 numberOfCopies ← extractNumberOfMandatoryCopies(conflicts);
6 copyInstructions ← extractCopyInstructions(conflicts);
7 return copyInstructions, numberOfCopies;

4.2 Nogood Detection using MiniSat

MiniSat is an open-source SAT solver that supports incremental addition of
unit assumptions. In other words, it distinguishes between clauses that are
valid for all runs and clauses that are added only for one run. These temporar-
ily added clauses are called assumptions. The main clauses from Section 3.3.2
only need to be added once. Afterward, operand-temporary assumptions can
be tried one after another, as described in Section 3.3.3. If the solver returns
True, the problem is satisfiable, otherwise unsatisfiable.

MiniSat requires the formula to be represented in CNF. As all Boolean for-
mulas listed in Section 3.3.2 are written as disjunctions of literals (except of
implications, see note in Section 3.3.2), a conjunction of these clauses is al-
ready in CNF.
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EVALUATION

This chapter focuses on the evaluation of the impact of the introduced im-
plied constraints on the code generation problem. In this thesis, the impact
of constraints is measured in relation to the base constraint model. The com-
parative measurement is based on the number of failed nodes that are en-
countered during search until the optimal solution is found. The more failed
nodes, the more time is spent exploring infeasible partial solutions. By com-
paring the difference in the number of failed nodes for the base model and
one that is extended with an implied constraint, one can draw conclusions on
their effect on cutting down the search effort.

How well an implied constraint performs, is dependent on several factors.
If a constraint that is successful in reducing the search overhead in one set-
up, it does not imply that the same will happen for every other set-up. As the
context plays a major role for a constraint’s effectiveness, it is required to take
the context into account in order to identify the strengths and weaknesses of
a constraint. Thus, the questions to answer within this chapter are:

1. If applicable, how do the implied constraints help to cut down the search
effort?

2. How do the implied constraints interact with each other?

3. For which variants of the Mips32 architecture do the implied constraints
have the most or the least impact?

4. What role does the search heuristic play?
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As the first question suggests, the experiments focus on the Mips32 archi-
tecture and variants of it that are obtained by slight alternations of architec-
tural characteristics. Due to a lack of time the experiments are not run for dis-
tinct architectural back-ends than the Mips32. The analysis of search heuris-
tics is out of scope, however, some insights on the influence of the search
heuristic on an implied constraint’s impact can be drawn, so that parts of
question number four can be answered. For simplicity, the hardness of a prob-
lem instance is seen relatively to the search effort that was required for the
base model to find the optimal solution.

In order to answer the questions in focus, several experiments are run. Sec-
tion 5.1 delineates the experimental set up, i.e. the test instances, the search
heuristic and the extracted data from each run. Section 5.2 analyzes results
gained for the unaltered Mips32 architecture, both for adding single constraints
and for adding groups of constraints. Section 5.3, Section 5.4 and Section 5.5
concentrate on the impact of single constraints for variants of the Mips32.

5.1 Experimental Set Up

The test set contains 1176 basic blocks that were extracted from 94 test func-
tions. The test functions belong to the C program bzip2, which is part of the
standard SPEC CPU2006 benchmark suite [13]. Each basic block is solved in-
dependently and is thus to be seen as a stand-alone test instance.

During the experiments, the following two values are extracted for each
test instance:

1. Solution cost (makespan) and

2. Number of failed nodes encountered until finding the solution.

The thesis does not contain the measurement of runtime. Measuring the
number of failed nodes instead gives the possibility to measure the impact
platform-independently. On top of that, as the search heuristic is almost com-
pletely static, approximately the same sequence of nodes will be explored. If
a failed node is detected a part of that sequence is just skipped. Therefore,
measuring the number of failed nodes goes along with the runtime needed
for finding the solution.

All experiments are run on a Linux machine with an Intel Core 2 Duo pro-
cessor P8700 with 2.9 GiB of memory. The experimental set up imposes a time-
out of 30 seconds on the search. The applied search heuristic is configured to
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Branch over Variable Selection Value Selection

1. Issue cycle Out-delimiter Smallest value
2. Active (Boolean) First unassigned Smallest value

("inactive")
3. Operation that

implements an
instruction

First unassigned Smallest value

4. Temporary that
implements an
operand

First unassigned Smallest value

5. Issue cycle First unassigned Smallest value
6. Register Smallest domain size Smallest value

Table 5.1: Search heuristic.

immediately search for the optimal solution. Therefore, there are only two
possible outcomes of one experimental run: either the optimal solution was
found or the search timed out. Table 5.1 lists the search heuristic that is ap-
plied within the context of this thesis. It defines six branching strategies that
are applied in sequence. The first column specifies which type of variables
is branched on. Variable selection denotes the picked variable for branching,
whereas value selection describes which value the variable is assigned to. Note
that the first branching strategy branches on the instruction cycle of the out-
delimiter. In other words, it branches on the makespan (the out-delimiter is
scheduled as soon as all instructions finish execution). It assigns the small-

est possible value within its domain to the out-delimiter. If a solution can be
found, it will thus be the optimal one as the search strategy starts off with
exploring partial solutions with the smallest possible makespan and contin-
uously increases it as long as no solution is detected. The second branching
strategy branches on the active variables. These variables refer to the activ-
ity of a copy instruction, so whether they are used or not. All other strategies
are self-explanatory. The applied search heuristic is simplistic. It is only set
to branch on all problem variables that have to be assigned in order to gener-
ate the final assembly code. As already mentioned, the analysis of the search
heuristic was out of scope.

The following sections list results for different configurations that are com-
pared to the base constraint model (Section 2.3.3). All plots are generated us-
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Figure 5.1: Failed nodes for base model with and without predecessor constraints. Total
difference: 291:0 .

ing Python and the Matplotlib library [14].

5.2 Experiment 1: Mips32

The first experimental set up is based on the unaltered Mips32 architecture.
Section 5.2.1 evaluates the impact of each implied constraint in isolation. This
section shall give an intuition on how each constraint interacts with the base
model and if appropriate, how they achieve to reduce the number of failed
nodes. In Section 5.2.2, the base model is extended with groups of implied
constraints in order to analyze potential interactions.

5.2.1 Impact of Implied Constraints in Isolation

This section analyzes the results that are obtained if the base model is ex-
tended with respectively one implied constraint at a time. It introduces the
diagrams that are used and explains why specific configurations lead to better
or worse results.

Figure 5.1 compares the base model to its extension with additional pre-
decessor constraints. The axes refer to the number of failed nodes that were
encountered while solving an instance: the x axis refers to the base model,
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whereas the y axis relates to the extended model. The plot uses a logarithmic
scale but the interval near zero is on a linear scale in order to display a value of
zero failed nodes in a reasonable manner. Along the line, the number of failed
nodes is the same for both models. Each point refers to a basic block instance
for which both models found the optimal solution. Thus, if a point is situated

• on the line, the number of failed nodes is the same for both, if it lies

• below the line, the instance could be solved with less failed nodes using
the extended model, and if it is

• above the line, the instance was solved with more failed nodes using the
extended model.

As groups of points are overlapping each other, 291:0 summarizes the total
number of instances, for which the same solution was found while encounter-
ing less (291) or more (0) failed nodes in comparison to the base model. On
the basis of this graph, both the absolute numbers of failed nodes as well as
the relative proportion of decreased or increased failed nodes are shown.

It becomes visible that the number of failed nodes does not increase for
any test instance. Furthermore, the predecessor constraints cut down the
search effort for in total 291 basic blocks, whereas the majority of these blocks
are considered as easier to solve instances. Nevertheless, the base model re-
quired up to a little bit more than 10 failed nodes for solving 143 instances
of these easier range, whereas the extended model could completely reduce
the number of failed nodes to zero. Considering middle-range hard problems,
only a small proportion of failed nodes were avoided. Whether or not a prede-
cessor constraint achieves to cut down the search effort, depends on several
aspects. First, for a part of instances (including some in the hard range) pre-
decessor constraints are not even generated, because the number of immedi-
ate predecessors does not exceed the overall resource capacity. Second, yet
if predecessor constraints are added, they are subsumed in some of the test
cases. Consider the dependency graph in Figure 5.2. Instructions A and B are
both executed by the same resource and are immediate predecessors of x. As
instructions cannot be executed in parallel on the Mips32 architecture, a pre-
decessor constraint is added for instruction x. However, the new constraint
does not prune any values, as it is subsumed by the combination of data prece-
dence constraints: according to Equation 1.12, one constraint enforces that in-
struction x has to follow instruction B and a second ensures that instruction
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A

B

x

Figure 5.2: Example of a subsumed predecessor constraint.

B succeeds instruction A. What happens here is that the issue cycle values
of B are pruned, so that B can never proceed A and thus values in the issue
cycle domain of x are removed so that x succeeds B (and thus A). Because the
two predecessors A and B have to precede each other, the data precedence
constraints already make sure that x cannot be issued before instructions A

and B are issued. In spite of these drawbacks, the predecessor constraints are
successful for a total of 291 basic blocks. The strongest effects are gained for
easier instances. When looking into these positive results, predecessor con-
straints also achieve these in combination with the search strategy on hand.
At first, predecessor constraints remove values from the lower bounds of an
instruction’s issue cycle. By increasing the lower bound of instructions, the
lower bound of the out-delimiter’s issue-cycle domain is affected: the out-
delimiter is equivalent to the makespan and cannot start until all other in-
structions within the block have finished execution. Thus the lower bound of
the issue cycle of the out-delimiter is increased. As the first branching strat-
egy branches on the smallest value of the out-delimiter’s issue cycle, with each
value that is removed, a complete branch can be avoided to be explored. On
top of that, even more branches can be avoided, if the out-delimiter has a lot
of predecessors itself. Apart from this, predecessor constraints also trigger fur-
ther propagation (data precedence constraints, Equation 1.12) by altering the
issue cycle domain of an instruction. If the issue cycle domains are reduced,
more instructions are issued during the same interval and thus the pressure
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Figure 5.3: Number of solutions found by configuration, compared to base model as
baseline. Each configuration is equivalent to the base model plus one implied constraint.

on the available resources rises that are needed for execution. If the instruc-
tions for this interval can never be scheduled without exceeding the existing
capacity, the partial assignment fails.

Until here, only instances that were successfully solved by both models
were considered. Figure 5.3 illustrates how many solutions were newly found
or lost compared to the base model. By adding the predecessor constraints
to the base model, the model succeeded in finding optimal solutions for four
more problem instances.

Even though the predecessor and successor constraints are symmetric ver-
sions, the results obtained for successor constraints are completely different:
in Figure 5.4 only two instances could be improved in the number of failed
nodes. Considering that the predecessor constraints had a much larger im-
pact on the results, a reason why the symmetric version performs much worse
can be traced back to the search heuristic. Predecessor constraints have the
advantage of pruning values from the lower bound of instruction cycles that
directly affects the domain of the out-delimiter. Successor constraints, how-
ever, prune values from the upper bound of instruction cycles. The issue cycle
of the out-delimiter is not affected in this case: if instructions can finish before
the out-delimiter is executed, no constraint will fail. The partial assignment is
still valid. Furthermore, the application of successor constraints does not nec-
essarily trigger more propagation on the issue cycle domains, as it does for

59



CHAPTER 5. EVALUATION

-10

1

0

10

1

10

2

10

3

10

4

10

5

Base model

-10

1

0

10

1

10

2

10

3

10

4

10

5

M
o
d
e
l
 
w

i
t
h
 
s
u
c
c
e
s
s
o
r
 
c
o
n
s
t
r
a
i
n
t

Failed nodes encountered

Figure 5.4: Failed nodes for base model with and without successor constraints. Total
difference: 2:0 .

the predecessor constraints. Summing everything up, successor constraints
have a disadvantage compared to the predecessor constraints for this particu-
lar combination of existing model constraints and search heuristic.

Similar to the results obtained for extending the base model with prede-
cessor constraints, adding copy activation constraints affects mostly easy to
solve instances, but also achieves to reduce the search effort for a few hard
cases, as shown in Figure 5.5. For 323 basic blocks, for which the base model
encountered up to around 25 failed nodes, the extended version could find
the optimal solution without exploring any failed node. In total, it reduces
the number of failed nodes in 411 cases. On top of that it found the optimal
solution for 12 cases, for which the base model timed out.

For copy activation constraints, the achievement of removing all failed
nodes can be ascribed to the constraint part that raises the lower bound of the
makespan. Even if no mandatory copies were detected, it could raise the lower
bound on the basis of the other mandatory instructions. One can see that the
minimum makespan constraint can be applied to more cases than the actual
copy activation constraint, as it can also be used if no copy is required. As
mentioned for the predecessor constraints, this effect benefits from the search
strategy that first branches on the makespan. The copy activation constraints
achieve to solve harder instances where pre-assignments play an important
role. Figure 5.3 shows that the copy activation constraints managed to solve
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Figure 5.5: Failed nodes for base model with and without copy activation constraints.
Total difference: 411:0 .

the most instances compared to any other model extension. For all these in-
stances, copy conflicts could be detected, whereas the number of mandatory
copies that have to be active mostly vary between two and four. Especially if
the total number of copies that exist for one temporary is low, the copy activa-
tion constraints have a greater effect, as it enforces copies to be active sooner.
Taking the search heuristic into consideration, the second branching strategy
branches on the activity of copy instructions. Thus, if these variables can be
set early, a lot unnecessarily partial assignments can be avoided. For other in-
stances, however, neither a copy conflict was detected nor did the minimum
makespan constraint make a difference, as its effect is subsumed by other con-
straints similar to the case for predecessor constraints (see Figure 5.2).

The predecessor and copy activation constraints were both successful for
solving instances of the lower range. As shown in Figure 5.6, nogoods to the
contrary, do not affect those, but rather middle range to hard problems, where
it could achieve to avoid in its best case up to roughly 60% of the failed nodes
that were encountered in the base model. It furthermore finds optimal solu-
tions to seven more instances. The examples show that the combination of
unary nogoods, binary nogoods and the activation of a copy instruction dur-
ing search, can lead to a cascade of copy activations. First, unary nogoods
directly reduce the number of temporaries that can implement an operand.
Then, during search, if a copy instruction is activated (see second branching
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Figure 5.6: Failed nodes for base model with and without nogood constraints. Total
difference: 29:0 .

strategy), its defined temporary has to be live. According to Equation 1.2, a
temporary can only be live if it is used. If that temporary was part of a unary
nogood, chances are high that it was removed from every obligatory operand’s
domain. In that case, it can only implement an operand that belongs a copy
instruction. Thus, another copy instruction is activated which again causes
a temporary to be live and to be used. Apart from that, by defining that an
operand is implemented by a temporary, a binary nogood might be triggered
so that even more values are pruned from the operand domains. As the num-
ber of instructions that are active grows, so does the consumption of resources.
In some cases this causes the partial assignment to fail, as the number of used
resources exceeds the capacity.

Figure 5.7 shows the runtime in seconds for detecting nogoods depending
on the basic block size. Most basic blocks of this test suite contain between
100 and 1000 instructions. While blocks of 20 instructions can be processed
very fast, the runtime grows up to 100 seconds for 100 instructions. The com-
plexity can be deduced from the graph and lies in O

(

|I |3
)

. In spite of the at-
tempt to break down the number of tested assumptions, a great number of
assumptions remain to be checked. There are still too many assumptions that
turn out not to be a nogood: in average, only 0.02% of all tested assumptions
are nogoods. As expected, the current implementation of the nogood detec-
tion is not suitable for real-world applications.
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Figure 5.7: Runtime of nogood detection.
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Figure 5.8: Failed nodes for the combination of successor, predecessor and copy activa-
tion and nogood constraints compared to the base model. Total difference: 501:0

5.2.2 Impact of Implied Constraints in Groups

This section gives a brief overview on the results of solving instruction schedul-
ing and register allocation for basic blocks while adding groups of implied
constraints. The objective is to analyze possible interactions, i.e. whether the
implied constraints cancel each other out or whether they have an additive
effect. The target architecture remains the unaltered Mips32.
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Figure 5.9: Number of solutions found by configuration, compared to base model as
baseline. Each configuration is equivalent to the base model plus a group of implied
constraints.

Figure 5.8 shows the number of failed nodes when including all implied
constraints. The result suggests that the implied constraints have an additive
effect as all improved instances from each experimental run with only one
constraint at a time are still represented. For those instances that belong to
the intersection, the search effort could be cut down as much as it was possi-
ble in any of the involved constraints. Figure 5.9 shows the number of newly
found solutions for each combination of implied constraints. Again, the total
number of solutions that could be newly found is almost equivalent (some in-
stances lie in the intersection) to the sum of solutions found by each single
constraint. The best numbers were achieved by a combination of predeces-
sor, copy activation and nogood constraints, as their effects complement each
other. Hence, it is possible to solve easier, middle-range and some of the hard
problem instances for this combination of implied constraints.

The remaining graphs are listed in Appendix A.

5.3 Experiment 2: Increased Duration

In the second experiment, the Mips32 architecture is customized. The dura-
tions for all operations is increased as follows:
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Figure 5.10: Failed nodes for base model with and without predecessor constraints.
Mips32 architecture with increased durations. Total difference: 308:0 .

1. arithmetic logic operations have a duration of one,

2. program execution operations have a duration of two, and

3. memory operations have a duration of three.

This set up is expected to show the strengths of the predecessor and successor
constraints, as they address the problem of instruction scheduling with in-
creased duration. The constraints themselves have been investigated in more
detail in Section 5.2. Therefore the upcoming experiments will focus more on
the relation between constraint and architectural variant.

Figure 5.10 shows the results for adding predecessor constraints to the
base model. By increasing the duration of operations, the problem instances
become harder. The number of failed nodes that are encountered grows up to
105. In total, the amount of nodes for which the same solution was found
while encountering less failed nodes, increased by 17 instances compared
to the results for predecessor constraints on the unaltered Mips32. Further-
more, this setting seems to reduce the search effort for easy, but also medium
hard problems. By introducing higher durations, more values can be pruned
from an instruction’s issue cycle domain. For the hardest basic block that was
solved faster, the number of failed nodes could be reduced by 90%, which
translates to a total difference of around 700 failed nodes. These nodes could
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Figure 5.11: Number of solutions found by configuration, compared to base model as
baseline. Each configuration is equivalent to the base model plus one implied constraint.
Mips32 architecture with increased durations.

be avoided by an early detection of an infeasible makespan. By reducing the
issue cycle domains, the issue cycle of an instruction is set earlier so that con-
flicting assignments show up more quickly. In this case, the branching on the
makespan led directly to a conflict regarding the resource consumption.

However, this time, adding the predecessor constraints does not improve
the overall number of found solutions. The four instances that could not be
solved by the base model for the unaltered Mips32, were now successfully
solved.

Figure 5.12 illustrates the number of failed nodes for the experimental run
with and without successor constraints. This time, the number of instances,
for which the search effort could be cut down, increased to 49. By increasing
the duration the proportion of pruned values was raised, which suffices to trig-
ger the propagation by other constraints. For this reason, the successor con-
straints have the same effect as the predecessor constraints: too many instruc-
tions have to be scheduled within the same interval, which causes the node to
fail, as not enough resources for execution are available. Still few basic blocks
are affected and in the majority of these problems, more failed nodes were re-
duced when using predecessor constraints instead. As Figure 5.11 shows, no
new solution was found.
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Figure 5.12: Failed nodes for base model with and without successor constraints. Mips32
architecture with increased durations. Total difference: 49:0 .

-10

1

0

10

1

10

2

10

3

10

4

10

5

10

6

Base model

-10

1

0

10

1

10

2

10

3

10

4

10

5

10

6

M
o
d
e
l
 
w

i
t
h
 
c
o
p
y
 
c
o
n
s
t
r
a
i
n
t

Failed nodes encountered

Figure 5.13: Failed nodes for base model with and without copy activation constraints.
Mips32 architecture with increased durations. Total difference: 367:0 .
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Figure 5.14: Failed nodes for base model with and without nogood constraints. Mips32
architecture with increased durations. Total difference: 18:0 .

The impact of the copy activation and nogood constraints does not differ
from the unaltered Mips32 setting. Even if the copy activation constraints con-
tain the minimum makespan constraints, a change of duration will not result
in an increased makespan, because they assume that the duration of each op-
eration is one anyway. Therefore, the minimum makespan will definitely be
too conservative, which can also be seen in Figure 5.13: for the easier to solve
instances, less failed nodes can be reduced. As the problems become harder
to solve, less basic blocks can be improved by the application of copy activa-
tion and nogood constraints. Still, adding them to the base model reduces
the search effort and succeeds in finding new solutions. Figure 5.14 shows the
difference in number of failed nodes for adding nogood constraints.

5.4 Experiment 3: Increased Register Pressure

The third experiment changes the calling convention. The calling convention
regulates, how arguments are passed to the called functions (the callee) and
how the calling function (the caller) retrieves the return value. One part of this
organization concerns the responsibility of backing up register values that are
overwritten during a function call. This responsibility is shared between the
caller and the callee: all register values that are caller save have to be backed
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up by the caller before the function call, whereas all register values that are
callee save need to be restored by the callee as soon as it finishes execution.
Within this experiment, five out of eight callee save registers are now changed
to be caller save. So, whenever a function is called, the caller has the responsi-
bility to back up more register values than before, if they are used. This is an
attempt to increase the possibility of conflicts that can occur due to register
assignments. The setting is assumed to be beneficial to the copy activation
constraints as more conflicts might arise due to overwrite and use conflicts.

Figure 5.15 shows the results for running the base model against an exten-
sion with copy activation constraints. Adding the copy activation constraints
still reduces the search effort for many instances. Yet, some instances that
were improved for the unaltered Mips32 were not improved in this experi-
mental run. In a direct comparison of the copy conflicts that were detected
for the unaltered Mips32 and this run, it becomes clear that the results of the
copy activation analysis are completely the same. The reason is that none of
the registers that were changed to be caller save are used anywhere else as a
static pre-assignment. As the conflict analysis is completely static, only those
static pre-assignments are considered and not those register assignments that
are set during search. If the analysis would consider a dynamic way of de-
tecting conflicts due to dynamic assignments, more conflicts could be found.
Nonetheless, by introducing additional registers that have to be saved for a
call, more copy instructions are to be handled and thus the problem instances
become a little bit harder. For some, this causes the decrease of improvement
compared to the previous experiments.

The results for the remaining constraints have not changed significantly
compared to the results obtained in Section 5.2. Basically, the number of im-
proved instances (both in number of failed nodes and newly found solutions)
decreased by a few basic blocks, as the problems got slightly harder. The re-
maining graphs are listed in Appendix A.

5.5 Experiment 4: VLIW architecture

The Mips32 architecture does not allow to issue multiple instructions at the
same time. Nevertheless, the constraint model captures the idea of instruc-
tion bundling. Within the fourth and last experiment, the following changes
are applied:

1. four instructions can be issued at the same time,
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Figure 5.15: Failed nodes for base model with and without copy activation constraints.
Mips32 architecture with increased register pressure. Total difference: 405:0 .

2. the number of BUs is increased to two,

3. the number of LSUs is increased to two, and

4. the number of ALUs is increased to two.

Due to a lack of time, other architectural back-ends except of the Mips32 are
not considered for evaluation. This experiment shall therefore give an intu-
ition on how the implied constraints perform for multiple-issue processors.

With the introduction of VLIW and the increase in available functional
units, more instructions can be issued at the same time, which leads to a
smaller makespan. A smaller makespan is beneficial to the search, as less
possible values for the makespan have to be branched on, until the optimal
makespan is found (first branching strategy branches on makespan). Further-
more, less conflicts due to overwrite and use conflicts might occur. Consider
two instructions that are not dependent on each. Assume that both instruc-
tions use a temporary t in a register r and that both of them would overwrite
register r with another temporary when executed. While this situation in a
single-issue processor would require a copy instruction to be activated so that
both can use the temporary, the same situation in a multiple-issue processor
can theoretically issue these two instructions at the same time without adding
any new instruction. The problems become easier to solve, which reflects in
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Figure 5.16: Failed nodes for base model with and without predecessor constraints.
Mips32 architecture with VLIW extension. Total difference: 38:0 .

the results: Figure 5.16 compares the number of failed nodes encountered for
the base model with and without the predecessor constraints. The reason why
so few points are to be seen in the graph, is that 1156 basic blocks were solved
with less than 10 failed nodes using only the base model. Only 20 instances re-
main, which are harder to solve. While the base model solved 1013 instances
directly, i.e. without exploring any failed node, the predecessor constraints im-
proved this number to 1042. With the increase of available resources and the
possibility to issue multiple instructions at the same time, less predecessor
constraints are added. Still, they succeed in cutting down the search effort. As
already observed in Section 5.2, predecessor constraints do not improve the
results for harder instances.

The results for the nogood constraints are similar: Figure 5.17 shows that
the overall number of instances that were found while encountering less failed
nodes has reduced to six and in Figure 5.18 one can observe that the nogood
constraints achieve to solve a few more instances compared to a run with the
unaltered Mips32. The nogood constraints themselves have not changed, as
the same operands, temporaries and register assignments are checked as be-
fore. Therefore, the increase in the number of newly found solutions might be
traced back to the fact that the instances become easier to solve.

In spite of the majority of basic blocks for which solving became easier,
there are a few basic blocks that became harder to solve. For an increased
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Figure 5.17: Failed nodes for base model with and without nogood constraints. Mips32
architecture with VLIW extension. Total difference: 6:0 .
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Figure 5.18: Number of solutions found by configuration, compared to base model as
baseline. Each configuration is equivalent to the base model plus one implied constraint.
Mips32 architecture with VLIW extension.
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Figure 5.19: Failed nodes for base model with and without copy activation constraints.
Mips32 architecture with VLIW extension. Total difference: 21:0 .

number of instructions that can be issued at the same time, the number of
possible schedule combination grows that do not cause a failure due to an
exceeded capacity. Therefore more combinations have to be explored. This
might be a reasons why the number of newly found solutions was reduced
for the copy activation constraints, as shown in Figure 5.18. Nevertheless, the
copy activation constraints reduce the search effort for 21 basic blocks.

For successor constraints, there is no impact at all.
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6
DISCUSSION

This chapter picks up the leading questions from Chapter 5 and discusses
them on the basis of the results gained from the experimental runs.

If applicable, how do the implied constraints help to cut down the search

effort? In general, all implied constraints except of the successor constraints
succeeded in cutting down the search effort.

The predecessor constraints prune values from the lower bound of the is-
sue cycle domains of instructions, which triggers further propagation through
other constraints that are defined in the base model. By the increased reduc-
tion of the issue cycle domains, conflicts can be detected. Especially because
the lower bound of the issue cycle of the out-delimiter is indirectly pruned,
infeasible values for the makespan can be avoided to be branched on.

Similar to the predecessor constraints, the minimum makespan constraints
that are part of the copy activation constraints reduced a lot of failed nodes by
pruning the lower bound of the out-delimiter’s issue cycle. Furthermore, the
harder instances could be solved by enforcing a number of mandatory instruc-
tions to be active. For those cases where mandatory copies were introduced,
the addition of copy activation constraints mostly led to a fast recognition
of infeasible assignments. Copy activation constraints helped to reduce the
number of failed nodes for easy and medium hard problem instances.

Nogood constraints affected only a handful instances. These however, were
part of the hard problems to solve. By adding nogood constraints, infeasible
operand-temporary assignments were reduced. The combination of the sec-
ond branching strategy, which branches on the activity of an instruction, and
the reduction of the operand-temporary assignments led to the activation of
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multiple copies. With the activation of multiple copies, constraints in the base
model detected the infeasible partial assignment.

How do the implied constraints interact with each other? The results show
that the constraints have an additive effect. As the successor constraints did
not help to reduce the search effort for any (or almost any) basic block, the
best configuration for the Mips32 was the combination of predecessor, copy
activation and nogood constraints. As they complemented each other, the
combination resulted in a higher number of newly found solutions as well as
an increased number for which the failed nodes were cut down.

For which variants of the Mips32 architecture do the implied constraints

have the most or least impact? The predecessor and successor constraints
are most successful for the Mips32 variant with increased duration. Both con-
straints incorporate the notion of duration and thus manage to prune a lot
of values in the issue cycle domains of instructions. For this variant, the suc-
cessor constraints actually showed some positive examples, however, it is dis-
pensable for all other variants. The copy activation and nogood constraints
affected the most instances for the unaltered Mips32. With the increase of
the register pressure and duration, the problem instances became harder, so
that their impact decreased. It is difficult to say for which variant all implied
constraints have the least impact. In numbers, that would be the VLIW vari-
ant, as only a handful of basic blocks were improved. However, the problems
were easier to solve so that less basic blocks were available to improve. There
seems to be no direct connection between the variants and a caused major de-
crease in the impact of implied constraints. Furthermore, the settings for each
variant have been set arbitrarily so that results would differ for small changes.
Thus, there is no clear answer to the question, for which variant the implied
constraints showed the least impact.

What role does the search heuristic play? The search heuristic shows to play
an important role when it comes to the impact of implied constraints on the
problem. The results suggest that the successor constraints are dispensable,
even if they are a symmetric version of the successful predecessor constraints.
One reason for this difference is the choice of the search heuristic. Predeces-
sor constraints prune on the lower bound of an instruction’s issue cycle do-
main, which directly or indirectly removes values from the lower bound of the
makespan. In combination with the search strategy, which first branches on
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the makespan, a lot of unnecessarily explored partial assignments can there-
fore be avoided. Successor constraints, however, prune values of the upper
bound of instructions and thus do not have the same impact as predecessor
constraints.
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7
CONCLUSION AND FUTURE WORK

This chapter summarizes the results and gives an outlook on future work.

7.1 Results

The thesis investigated, presented and evaluated a set of implied constraints
addressing register allocation and instruction scheduling. The results show
that the predecessor, copy activation and nogood constraints could success-
fully reduce the search effort for all variants of the Mips32 architecture and
even for the adapted multiple-issue Mips32 processor. The impact of the
predecessor constraints especially increased with higher operation durations.
Even if the instances became harder for some variants of the Mips32, each of
them still achieved to avoid unnecessarily explored failed nodes. The nogood
constraints only affected some basic blocks compared to the other two, but
those that were improved belong to the harder to solve basic blocks. As the
named implied constraints complement each other, the best results could be
gained by combining them. Successor constraints, however, turn out to be
dispensable for the given search heuristic. Therefore, a more accurate way
of finding implied constraints would have been to take the search heuristic
into consideration. The almost non existing impact of successor constraints
stresses the importance of the evaluation of implied constraints.
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7.2 Future Work

Apart from the predecessor and successor constraints, Malik et al. ([18]) present
several more implied constraints addressing instruction scheduling that can
be used for this model. For their scheduler, this model refinement was a key
step towards solving larger problems.

The implied constraints that are included into the base model in the scope
of this thesis were motivated by existing literature. Another way of finding
implied constraints is to follow a bottom-up approach [21]: finding implied
constraints by analyzing the search tree. By looking at the search tree, one
can detect infeasible assignments that lead to infeasible partial search trees
(contain only failed nodes). Ideally, an infeasible solution would directly be
detected as a dead-end. But as the solver continues to explore some of these
dead-ends, constraints are missing that would otherwise prevent it from ex-
ploring them. The bottom up-approach might even produce more powerful
constraints: if an implied constraint could be found using this approach, it is
already known to cut down the search effort for (at least) the specific instance
that was analyzed.

As mentioned in Chapter 6, the drawback on successor constraints was
due to the fact that the search heuristic was not considered during investi-
gation. Hence, customizing the search heuristic for given constraints might
increase the effectiveness of the investigated constraints.

Malik et al. [18] present a heuristic to decrease the number of predeces-
sor (and successor constraints) that are added to the model. Their algorithm
is based on a sorted list, whereas the predecessors are sorted by their lower
bound. As an attempt to achieve a similar effect, the heuristic within this the-
sis sorts the list of predecessors according to the number of their respective
predecessors (see Section 3.1.2). An alternative way of sorting the predeces-
sors that might be a more accurate adaptation of the heuristic proposed in
[18] is to sort them by the number of hops between the root instruction and
the predecessor in a dependency graph.

Moreover, the scope of implied constraints was bound to static constraints,
i.e. no new information during search was considered for adding new con-
straints. A dynamic implementation of the implied constraints presented in
this thesis could result in further improvement.
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(a) Failed nodes for base model with
and without predecessor and suc-
cessor constraints. Total difference:
292:0 .
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(b) Failed nodes for base model with
and without predecessor and nogood
constraints. Total difference: 309:0 .

Figure A.1: Results for the Mips32 architecture and groups of implied constraints of size
two. First part.
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(a) Failed nodes for base model with
and without predecessor and copy ac-
tivation constraints. Total difference:
487:0 .
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(b) Failed nodes for base model with
and without successor and nogood
constraints. Total difference: 31:0 .
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(c) Failed nodes for base model with
and without successor and copy ac-
tivation constraints. Total difference:
412:0 .
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(d) Failed nodes for base model with
and without copy activation and no-
good constraints. Total difference:
431:0 .

Figure A.2: Results for the Mips32 architecture and groups of implied constraints of size
two. Second part.
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(a) Failed nodes for base model with
and without predecessor, successor
and copy activation constraints. Total
difference: 488:0 .
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(b) Failed nodes for base model with
and without predecessor, successor
and nogood constraints. Total differ-
ence: 310:0 .
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(c) Failed nodes for base model with
and without predecessor, copy activa-
tion and nogood constraints. Total dif-
ference: 500:0 .
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(d) Failed nodes for base model with
and without successor, copy activa-
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Figure A.3: Results for the Mips32 architecture and groups of implied constraints of size
three.
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(a) Failed nodes for base model with
and without predecessor constraints.
Total difference: 289:0 .
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(b) Failed nodes for base model with
and without nogood constraints. Total
difference: 26:0 .
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(c) Failed nodes for base model with
and without successor constraints. To-
tal difference: 2:0 .
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Figure A.4: Results for the Mips32 architecture with increased register pressure.
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B.1 Constraint Model

The model is reprinted from [15].
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B.1. CONSTRAINT MODEL

B.1.1 Parameters

B , I ,P,T sets of blocks, instructions, operands and temporaries

ins(b) set of instructions of block b

tmp(b) set of temporaries defined and used within block b

operands(i ) set of operands defined and used by instruction i

use(p) whether p is a use operand

temps(p) set of temporaries that can implement operand p

definer(t ) instruction that defines temporary t

p ≡ q whether operands p and q are congruent

p⊲r whether operand p is pre-assigned to register r

width(t ) number of register atoms that temporary t occupies

low/high(p, q) whether operand p is the low or high component of
operand q

dep(b) fixed dependency graph of the instructions of block b

dist(i , j ,op) min. issue distance of instrs. i and j when i is imple-
mented by op

freq(b) estimation of the execution frequency of block b

B.1.2 Processor Parameters

O,R sets of processor operations and resources

atoms(r c) atoms of register class r c

operations(i ) set of operations that can implement instruction i

class(i ,op, p) register class in which instruction i implemented by op

accesses p

lat(op) latency of operation op

cap(r ) capacity of processor resource r

con(op,r ) consumption of processor resource r by operation op

dur(op,r ) duration of usage of processor resource r by operation
op
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B.1.3 Variables

rt ∈N0 register to which temporary t is assigned

oi ∈ operations(i ) operation that implements instruction i

ci ∈N0 issue cycle of instruction i relative to the beginning of
its block

tp ∈ temps(p) temporary that implements operand p

ai ∈ {0,1} whether instruction i is active

lt ∈ {0,1} whether temporary t is live

lst ∈N0 start of live range of temporary t

let ∈N0 end of live range of temporary t

B.1.4 Register Allocation

active instruction: the definer of a live temporary is active.

adefiner(t ) ⇐⇒ lt ∀t ∈ T (1.1)

live temporary: a temporary is live if it is used.

lt ⇐⇒ ∃p : use(p)∧ tp = t ∀t ∈ T (1.2)

live start: the live range of a temporary starts at the issue cycle of its definer.

lt =⇒ lst = cdefiner(t ) ∀t ∈ T (1.3)

live end: the live range of a temporary ends at the last issue cycle of its users.

lt =⇒ let = maxi∈I :∃p∈operands(i ):use(p)∧tp=t ci ∀t ∈ T (1.4)

disjoint live ranges: temporaries whose live ranges overlap are assigned to
different register atoms.

disjoint2(
{

〈rt ,rt +width(t ), lst , let , lt 〉 : t ∈ tmp(b)
}

) ∀b ∈ B (1.5)

null temporary: an inactive instruction does not use or define any tempo-
rary.

¬ai ⇐⇒ tp = null ∀p∈operands(i ), ∀i ∈ I (1.6)
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null operation: an inactive instruction is implemented by the null operation.

¬ai ⇐⇒ oi = null ∀i ∈ I (1.7)

operation selection: the operation that implements an instruction determines
the register class to which its operands are allocated.

oi =op =⇒rtp ∈atoms(class(i ,op, p))

∀p∈operands(i ), ∀op∈operations(i ), ∀i∈I
(1.8)

pre-assignment: some operands are pre-assigned to registers.

rtp = r ∀p ∈ P : p⊲r (1.9)

congruence: congruent operands are assigned to the same register.

rtp = rtq ∀p, q ∈ P : p ≡ q (1.10)

operand components: the registers of operands representing the low or high
part of other operands are assigned consequently.

rtp = rtq ∀p, q ∈ P : low(p, q)

rtp = rtq +
width(t : t ∈ temps(q))

2
∀p, q ∈ P : high(p, q)

(1.11)

B.1.5 Instruction Scheduling

data precedences: an instruction that uses a temporary must be preceded by
its definer.

tp = t =⇒ ci ≥ cdefiner(t ) + lat(odefiner(t ))

∀t ∈ temps(p), ∀p ∈ operands(i ) : use(p), ∀i ∈ I
(1.12)

fixed precedences: control and read-write dependencies yield fixed prece-
dences among instructions.

ai ∧a j =⇒ c j ≥ ci +dist(i , j ,oi ) ∀
(

i , j
)

∈ edges(dep(b)), ∀b ∈ B (1.13)

processor resources: the capacity of processor resources cannot be exceeded
at any issue cycle.

cumulative({〈ci ,dur(oi ,r ),con(oi ,r )〉:i∈ins(b)} ,cap(r )) ∀b∈B ,∀r∈R (1.14)
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