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Abstract
Compilers are a necessary tool for all software development. As
modern compilers are large and complex systems, ensuring that
the code they produce is accurate and correct is a vital but ardu-
ous task. Correctness of the code generation stage is important.
Maintaining full coverage of test cases in a compiler is virtually
impossible due to the large input and output domains.

We propose that random testing is a highly viable method for
testing a compiler. A method is presented to randomly generate
a lower level code representation and use it to test the code gen-
eration stage of a compiler. This enables targeted testing of some
of the most complex components of a modern compiler (register
allocation, instruction scheduling) for the first time.

The design is implemented in a state-of-the-art optimizing
compiler, LLVM, to determine the effectiveness and viability of
the method. Three distinct failures are observed during the eval-
uation phase. We analyze the causes behind these failures and
conclude that the methods described in this work have the po-
tential to uncover compiler defects which are not observable with
other testing approaches.



Referat
Kompilatorer är nödvändiga för all mjukvaruutveckling. Det är
sv̊art att säkerställa att koden som produceras är korrekt, ef-
tersom kompilatorer är mycket stora och komplexa system. Kod-
riktigheten inom kodgenereringsstadiet (registerallokering och in-
struktionsschemaläggning) är särskilt viktig. Att uppn̊a full täckning
av testfall i en kompilator är praktiskt taget omöjligt p̊a grund av
de stora domänerna för in- och utdata.

Vi föresl̊ar att slumpmässig testning är en mycket användbar
metod för att testa en kompilator. En metod presenteras för att
generera slumpmässig kod p̊a en lägre representationsniv̊a och tes-
ta kodgenereringsstadiet i en kompilator. Detta möjliggör riktad
testning av n̊agra av de mest komplexa delarna i en modern kom-
pilator (registerallokering, instruktionsschemaläggning) för första
g̊angen.

Designen implementeras i en toppmodern optimerande kompi-
lator, LLVM, för att avgöra metodens effektivitet. Tre olika miss-
lyckanden observeras under utvärderingsfasen. Vi analyserar or-
sakerna bakom dessa misslyckanden och drar slutsatsen att de
metoder som beskrivs har potential att finna kompilatordefekter
som inte kan observeras med andra testmetoder.
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Chapter 1

Introduction

Compilers form the backbone of all modern software development and are
one of the most mature branches of computer science. Without compilers,
programmers would be forced to write all of their code in assembly; a tedious
endeavor for most. Compilers form an abstraction between the programmer
and the computer, allowing the programmer to focus on the behavior of the
code rather than optimization and the minutiae of computer architectures.

However, the great complexity of compilers is a liability. The chance of
a compiler introducing a bug into a program increases as they perform more
and more complex tasks. These program bugs can be difficult to find as they
are a result of wrong-code compilation and not of user mistakes.

In order to discover these obscure compiler defects, compilers must have
their code thoroughly verified and tested. However, with modern compilers
consisting of hundreds of thousands of lines of code, this is a tedious job at
best and a virtually impossible one at worst.

This thesis presents a method to generate random machine-level code in
order to rapidly and automatically perform random testing on the code gen-
eration components of a modern compiler. Random testing of a compiler on
this level has, as far as we are aware, not been attempted before. Similar
types of testing on a higher abstraction level have been attempted with suc-
cessful results [1, 2], but testing at a lower level of abstraction allows for more
targeted, direct testing of the code generation components of the compiler.

In order to verify the validity of the methods presented in this report,
a case study is performed on LLVM, a state-of-the-art optimizing compiler
with Hexagon, an embedded digital signal processor architecture as the target
architecture.
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1.1 Background

Machine code for computer architectures is commonly encoded in the form
of a sequence of instructions operating on registers in the CPU, constants
and memory. The human-readable format of these instruction sets is called
assembly code. Although there are many commonalities between them, these
instruction sets are generally specific to a single computer architecture and
are not cross-compatible; instructions for one architecture cannot be executed
on another. This limitation, along with the fact that writing code in assembly
is a tedious and time-consuming task, necessitates the existence of program-
ming languages with a higher level of abstraction. However, these high-level
programs cannot be executed directly on computer architectures.

Compilation is the process of converting a program from a high-level pro-
gramming language to low-level machine code [3]. The processor architecture
being compiled for is called the compilation target or simply the target. To
facilitate this conversion, many different stages of transformation are required.

One of the final stages of compilation is code generation, in which the code
is converted from a target-independent form into a target-dependent one. This
stage encompasses several smaller stages: instruction selection, where instruc-
tions from the target instruction set are chosen to match the behavior of the
target-independent code; register allocation, in which the architecture’s reg-
ister and memory resources are allocated to the program; and instruction
scheduling, where the assembly instructions are reordered and/or grouped to
optimize the use of the processor’s resources and facilitate better performance
on computer architectures that can take advantage of instruction-level paral-
lelism.

As modern optimizing compilers must perform many different analyses and
transformations on the code, the complexity of these compilers is large. As the
complexity grows, so does the risk for defects in the code of the compiler [4].
Code generation is especially sensitive, as register allocation and instruction
scheduling have a strong effect on the performance of the code [5].

Random testing is a testing technique where random, independent test
data is generated and subsequently fed to the system under test to uncover
defects in the software. As the data is completely random, it is difficult to
determine whether the result of any given test case is correct or not. As a
result, random testing must employ an oracle; a secondary test that can be
used to verify the testing result. Oracles for random testing are commonly con-
structed from a simpler or alternative version of the system [6]. Since covering
every possible test case in a compiler can be difficult due to its complexity, we
believe random testing is a viable approach for testing compilers.
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1.2 Research question
Can random generation of machine code uncover defects in the code generation
stages of a modern optimizing compiler?

1.3 Goal
The goal of this work is to investigate whether is it possible to uncover defects
in a modern compiler by performing random testing directly on the code
generation components of the compiler. For this purpose, a method is devised
to generate random, human-readable machine code and use it to test a modern
compiler.

1.4 Methodology
Initially, we formulate the hypothesis that randomly testing a compiler on a
lower level (post-instruction selection) of abstraction can potentially expose
defects in a modern compiler. A method for generating random test cases
in the form of code is designed, and subsequently implemented in a modern
compiler as a case study. This implementation is then run for a long period
of time to collect data on which cases succeed and fail. Success is determined
by the successful termination of the compiler and the emission of a compiled
assembly file. Failure is determined by unsuccessful termination. The failing
cases are categorized and investigated to determine the cause of the failure.

1.5 Ethics and sustainability
Verifying that compilers are producing correct code is important from a sus-
tainable point of view. If obscure defects caused during compilation rather
than by programmer error are discovered in a software product, producing an
update for this product can be very time and resource consuming. Further-
more, if the software is located in a system which is either very difficult to
update or cannot be updated at all, companies may be forced to perform costly
recalls. By improving testing of compilers, we can prevent wasting resources
on this type of issue.

The notion of testing any system has ethical considerations in that engi-
neers should strive to release products that do not cause harm to people. By
testing compilers, we attempt to minimize any harm that could occur through
miscompilation, hopefully making software safer for people to use.
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1.6 Limitations
The method for generating random code is meant to be as general as possible;
in other words, it is suitable for any reasonable machine code representation.
However, the implementation is intended to only produce code for the Qual-
comm Hexagon V4 architecture. The testing method is also general, but as
with the generation implementation it is specifically targeted at the LLVM
compiler framework.

Certain instructions are not used during generation to simplify the gener-
ation process. These instructions include intrinsic functions, memory barriers
and other special instruction types. Section 6.1 goes into further detail on
future work to eliminate these limitations.

1.7 Outline
Chapter 2 presents the background information of the relevant topics of the
thesis. Chapter 3 details the theoretical design of the method developed in
this thesis. Chapter 4 details a case study with a functional implementation
of the method, along with methods for testing the validity of the method.
Chapter 5 presents the results of the case study. Chapter 6 concludes the
thesis work and covers future improvements and opportunities.



Chapter 2

Background

This chapter covers the necessary background knowledge for this report. Var-
ious topics pertaining to compilers, such as code generation are detailed. The
subject of software testing is introduced. Abstract representations of computer
programs and machine code are also described.

2.1 Compilers
At the most abstract level of design, a compiler consists of two parts: a front-
end and a back-end. The task of the front-end is to take a program – commonly
written in a high-level language – and convert it into a target-independent
intermediate representation. This intermediate representation (IR) is sub-
sequently fed to the backend, which performs target-specific optimizations,
generates machine code and emits a textual or binary output for the target
architecture [3, 7].

2.1.1 Code generation
The code generation stage is the largest part of the backend. It is during
this stage that the IR is lowered from a target-independent representation
to a target-dependent one, typically in the form of instructions of the tar-
get architecture. Code generation commonly consists of three smaller stages;
instruction selection, register allocation, and instruction scheduling [3, 8].

Instruction selection is the process of selecting target-dependent ma-
chine instructions based on the operational semantics of the target-independent
IR. This can be done with a tiling approach, where subtrees of IR are matched
against known patterns to produce machine instructions [9, 10].

5
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Register allocation is the process of assigning physical hardware register
space to symbolic variables (typically called temporaries or virtual registers).
As the number of physical registers in a processor is often limited, the compiler
may be forced to store variables in memory instead of in registers. This is
called spilling [11].

Instruction scheduling is the process of analyzing the data dependencies
between instructions to determine an optimal ordering of operations. This is
important for superscalar or VLIW processor architectures, where multiple
instructions can be executed in parallel to increase performance [3, 5].

In order to ensure that the resulting code operates according to its specifi-
cation and is as efficient as possible, it is important that each code generation
stage is free of any defects that could cause the compiler to emit erroneous
code.

2.2 Machine code representation
Representing machine code on a higher level requires models which are capable
of encapsulating two properties of a program: data flow and control flow.
Data flow is the representation of data or state as a procedure is executed.
Higher level program representations (like C) use variables to model data flow.
Control flow is the representation of the behavior of a program or procedure
with respect to its state. In C, this is modeled with control flow statements
such as if and while.

On a lower level, computer programs consist of a series of instructions
which perform operations on values stored in either memory or in registers.
Machine code procedures (and by extension, programs) consist of basic blocks;
groups of instructions bounded by the control flow of the procedure. Each
basic block consists of a series of instructions unbroken by control flow. By
definition, execution of a basic block must begin at the first instruction in the
block, and each instruction must be executed exactly once for that execution,
though not necessarily in the given order. At the bottom of the basic block,
control is passed to another program location, either through a jump or branch
instruction, or through a return instruction (in which case control leaves the
procedure completely).

2.2.1 Instructions and temporaries
Machine code instructions are typically constructed in the form of D = op U
where op is a mnemonic representing an instruction, U is a set consisting of
inputs to the instruction and D is the set of resulting values. The inputs
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(called uses) are commonly registers, immediate values or memory locations.
The outputs (called defines or defs) are stored in registers.

As all physical computer architectures have a limited number of registers,
pre-register allocation machine code representations store and read values from
a very large imaginary set of registers, commonly called temporaries or virtual
registers. During register allocation, each temporary is assigned a physical
register in the CPU. If there are not enough registers to store temporaries
in, some temporaries may have to be stored in memory to free up space in
registers which would otherwise be occupied.

2.2.2 Control flow graphs
The most common method of representing intra-procedural control flow is the
control flow graph. A control flow graph (or CFG for short) is a directed graph
where each node represents a basic block1 and each edge represents control flow
(branches or jumps) [3]. CFGs are a very common tool in program analysis
and optimization.

The edges of a CFG model the branching of control flow between basic
blocks. Nodes which control is transferred to are called successors and nodes
which control is transferred from are called predecessors. One of the nodes in
the CFG is designated as the entry node. This node is the entry point of the
procedure, and therefore has zero predecessors [3].

Definition 1. A control flow graph is a directed graph G = (N,E, s) where
N is the set of nodes in the graph, E is the set of edges in the form of tuples
(x, y) where x, y ∈ N , and s ∈ N is the entry node.

Dominance is a property of nodes in a control flow graph. A node n in a
graph dominates another node m if every path from the entry node to m must
pass through n. By this definition, every node in a flow graph dominates itself,
and the entry node dominates all nodes. Dominance is an important property
for optimizing compilers and is used in several analysis methods [12, 13, 14].

Reducible control flow graphs

Control flow graphs can be divided into two classes depending on their struc-
ture: reducible graphs and irreducible graphs. Reducible graphs are suscepti-
ble to a number of analyses and optimizations, which makes them desirable in
compilation. Common control flow structures like if-then-else and while-loops

1The terms node and basic block are used interchangeably in this report unless otherwise
specified.
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a a
=⇒
T1(a)

a

b

a/b
=⇒
T2(b)

Figure 2.1. The T1 and T2 reducibility transforms. T1 eliminates self-loops
and T2 eliminates nodes with single predecessors.

will always produce reducible control flow graphs [15]. Misusing language fea-
tures such as goto in C, however, can produce irreducible flow graphs [16]. A
definition of graph reducibility is given by [15, 14].

In Definitions 2 and 3, the head of an edge is the node which the edge
points to and the tail of an edge is the node which the edge points from.

Definition 2. The set of back edges in a flow graph consists of all edges whose
heads dominate their tails. The set of forward edges consists of all edges which
are not back edges.

Definition 3. A flow graph is reducible if the subgraph consisting of its forward
edges is acyclic and there is a path from the entry node s to every other node
in the graph.

An analysis method for determining graph reducibility is given by Ullman
and Hecht [15]. They introduce two transforms, T1 and T2, that can be
iteratively applied to the nodes of a control flow graph. The transforms are
exemplified in figure 2.1. By applying these transforms to a flow graph, it will
be successively reduced until either a single node remains or the transforms
can no longer be applied to any nodes. If the former occurs, the graph is
reducible. Otherwise, it is irreducible.

Definition 4. Consider a graph G = (N,E, s) with node n ∈ N . If there is an
edge (n, n) ∈ E, the result of T1(n) on graph G is a subgraph where the edge
(n, n) is removed from E. In other words, the self-loop on n is eliminated.

Definition 5. Consider a graph G = (N,E, s) with nodes n,m ∈ N and
n 6= m. If n is the only predecessor of m, the result of T2(m) on graph G is
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where m is removed from N , all successor edges of m are folded into n and
the edge (n,m) is removed from E. Any duplicate edges are removed.

2.2.3 Static single assignment form
Static single assignment (or SSA) is a form of machine code which combines
aspects of control and data flow. Having a procedure in SSA form simpli-
fies analysis and transformation and allows for many efficient optimization
techniques [17].

The primary requirement of SSA form is that each temporary in a procedure
be defined only once and each temporary be defined before it is used. If an
instruction produces a result, it must define a new temporary instead of reusing
an old one. In a procedure with no control flow, fulfilling this requirement
is trivial; all that is needed is a value numbering algorithm [18]. However, a
procedure with branching or looping control flow cannot define each temporary
only once, as a single value in a basic block may be sourced from several
different predecessor blocks; see figure 2.2 for an example.

int function (int a) {
int b;
if (a < 5) {

b = a + 1;
}
else {

b = a - 1;
}
return b;

}

int function (int a) {
entry:

t1 = a;
if (t1 >= 5) jump bb2;

bb1:
t2 = add t1 , 1;
jump bb3;

bb2:
t3 = sub t1 , 1;

bb3:
t4 = φ(t2 , t3);
return t4;

}

Figure 2.2. A code snippet where the value in a variable can be assigned
from multiple locations based on program state. The left shows a C-like code
snippet and the right a pseudo-machine code example of the snippet. In the
example, variable b (t2, t3 and t4) will have a different value depending on
the value of a (t1).

This problem is solved by the use of φ-functions: special, virtual instruc-
tions that encode congruences between temporaries in different basic blocks.
If the value of a temporary is taken from different basic blocks depending on
control flow, a φ-function is added in order to determine which temporary to
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copy the value from based on which basic block control was passed from. In
figure 2.2, temporary t4 is congruent with t2 and t3 and will take its value
from either depending on the evaluation of the conditional jump.

2.3 Software testing
Testing is the process of uncovering defects in a system or product. These
defects can be a result of incorrect system requirements or mistakes made in
the design and implementation phases of the system. Implementation defects
in a software system are often referred to as bugs and manifest in the form of
mistakes in the source code of the system. If a system contains an excess of
defects, the chance of experiencing a failure – a state where the system fails
to perform its task correctly – increases [19].

There are many ways of testing a software system, but in most cases it
involves providing some test data as input to the system under test (or SUT),
receiving a resultant output data and then verifying that the output is correct
for the given input. This verification step is performed with an oracle; an
alternate system capable of telling whether or not the SUT has performed its
task correctly [20].

2.3.1 Oracles
In testing, oracles are used to validate the results of tests performed on a
system. The quality of the oracle used to test a system weighs heavily on the
test results. Depending on the system, an oracle can be run before, during or
after execution of the system under test. Oracles can also be split into distinct
design types, including (but not limited to) true, heuristic, and assertion-based
oracles [20].

A true oracle is a reproduction or alternate implementation of the SUT.
For a SUT to pass a test, it should produce the same output as the true oracle
for a certain input. True oracles are powerful as they attempt to model the
exact behavior of the system, but constructing a true oracle is difficult for
any system beyond a simple algorithm. A true oracle for a complex software
system must often be of equal complexity to the system, which increases the
probability of introducing defects into the oracle itself. An example of a true
oracle for a sorting algorithm can be another, independent implementation of
a sorting algorithm [20].

A heuristic oracle is an oracle that attempts to model the correlation
between input data and output data to determine correct system behavior.
To accomplish this, heuristic oracles use a simpler algorithm than the system
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under test to provide a reasonable guess at the validity of the results. Heuristic
oracles are not as reliable as true oracles, but they are easier to implement.
An example of a heuristic oracle for a sorting algorithm can be a routine
that verifies that the output is ordered and contains the values given in the
input [20].

Assertion-based or specification oracles are a type of oracle that utilizes
assertions, preconditions and/or postconditions to determine if a system is
operating correctly. Assertions are a software mechanism used to assert cer-
tain conditions at specific points during program execution. The conditions
represent the required system state at the specified points. If a condition does
not hold, the program will abort its execution as it has reached a state which
will result in an eventual failure. An assertion-based oracle for a sorting algo-
rithm is the same as the heuristic one; given an input and an output, the oracle
would examine if the output data matches the required postcondition [21].

2.3.2 Random testing
As compilers consist of a large number of interconnected stages that perform
complex analyses and optimizations, constructing tests and providing an or-
acle for a compiler can be difficult. The domain of both input (source code)
and output data (machine code) is virtually infinite in size, making it difficult
to construct test cases for all possible system states and determining that the
compiler has produced correct machine code for the given input.

For this reason, random testing (or fuzzing) is a viable approach for testing
compilers. By constructing vast amounts of random test cases and using them
as input to the system under test, the system can be tested very quickly
and with less human input than a manual testing approach [6]. The testing
approach can be nearly fully automated with the addition of test minimization
and delta debugging [22, 23].

2.4 Random testing of compilers
As generation of random test data (and in this specific case, code) is an im-
portant part of random testing, it is a widely studied topic [24, 25, 26]. A
technique worthy of note is property-based testing [27]. It employs an ap-
proach parallel to assertion-based oracles; instead of using preconditions and
postconditions to verify testing results, the assertions are used to generate test
cases and suites. The tool QuickCheck is an implementation of a property-
based tester [28].
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In their paper on graph reducibility, Ullman and Hecht present a simple
graph grammar [29] to express reducible subgraphs for generating random
control flow [15]. Yang et al. [2] use conditional filters and probability tables to
produce random C programs. The compiler framework LLVM includes a tool
called llvm-stress, designed to generate random intermediate representation
code for LLVM [30].

Using random testing on compilers has been attempted in the past, with
excellent results [31, 2]. One notable example of this is Csmith, a generator
of random, valid (according to the C99 specification) C programs [2]. Csmith
has found hundreds of bugs in mainstream compilers like GCC and LLVM
by employing random differential testing. The generated programs produce
an output on the standard output stream. The code is compiled with mul-
tiple, independent compilers and the results of executing the programs are
compared. If there is a discrepancy, there is a potential bug.



Chapter 3

Design

This chapter details the general design of the random code generation methods
presented in this report.

3.1 Random code generation
The random code generation method in this paper is divided into three pri-
mary steps: architecture analysis, control flow generation and data flow gen-
eration.

Architecture analysis is the process of analyzing the properties of the com-
puter architecture being targeted by the random code generator. This analysis
determines which instructions are going to be used in generation, the prop-
erties of the instructions as well as the different types of registers that are
available.

Control flow generation is the process of creating a random control flow
graph. We establish a number of rules which the generated CFG must adhere
to in order to simplify the generation algorithm.

Data flow generation is the final step in constructing the random machine
code program. In this step, instructions and temporaries are randomized
and inserted into each basic block to produce the data flow of the generated
procedure.

3.1.1 Architecture analysis
Architecture analysis is the first step of random code generation. In this step,
the entire instruction set of the target architecture is enumerated and sorted
into various categories to simplify the later stage of data flow generation. This
step is required to prevent the generator from producing invalid code - code

13
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which is not in SSA form nor follows the rules of CFG generation. While
the purpose of the random code generator is to produce random code, code
that is too random (instructions with incorrect operands, temporaries that
are defined multiple times or not at all) would make little sense to both the
compiler and the tester.

Instruction categories

The instructions of the generation target is split up into the five following
categories:

Operators are the most common instruction type. These are instructions
that take at least one temporary as input and provide a result in another tem-
porary, and have no other side effects such as reading or writing to memory.
This group is where instructions such as add (addition) and mul (multiplica-
tion) belong. However, it is not required that operators actually modify the
inputs they are given; a copy from one temporary to another still belongs in
the operator category.

Branches are instructions that alter the control flow of the procedure.
These instructions are placed at the bottom of each basic block depending on
the layout of the control flow graph. Branch instructions are further split into
conditional and unconditional branches. The meaning of these categories can
be inferred from the name; conditional branches only branch depending on
some computed condition, while unconditional branches will always branch to
their specified target.

Returns are instructions that terminate the procedure. These instructions
are placed at the end of a basic block that has no successor blocks.

Immediate moves are instructions that introduce constants to the data
flow. These are instructions that take a single immediate value and store it in
a temporary.

Memory instructions are instructions that either read from or write to
memory. The memory location can be on the stack, a global variable or a
pointer.

Instructions that do not fall into any of these categories are not consid-
ered for random code generation, as they might have effects that are either
not modeled by the compiler’s intermediate representation or could result in
undefined behavior. However, we believe that most common instructions fall
into these categories.
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Operand analysis

Each instruction has a number of operands. These operands can take a number
of different types of values, the most common of which are temporaries/regis-
ters and immediates. However, in order to produce valid code, it is important
that the operands are only assigned values that correspond to their operand
type, and that the values are in the correct range.

Architectures commonly have sets of registers that can be used for different
purposes or differently sized values. For example, the Hexagon architecture
possesses 3 primary general purpose register sets: 32-bit integer, 64-bit inte-
ger and 1-bit predicate registers. Temporary operands must only be assigned
temporaries which belong to the register set specified in the architecture def-
inition, or invalid code may be produced.

Immediate values are also restricted by the architecture. For every immedi-
ate operand in an instruction, three properties are considered: size, signedness
and alignment. For example, an instruction could specify that it can only take
an immediate that is unsigned, 8 bits large and aligned on the two least sig-
nificant bits1. If these constraints are not considered during random code
generation, the generator might output code in which the immediate values
do not fit in their instructions.

3.1.2 Control flow generation
Control flow generation is the process of constructing an arbitrary control flow
graph. The algorithm must be capable of generating valid graphs that can
model any generic procedure, but the graphs cannot be too random, as overly
random graphs may lack properties that would make them susceptible to anal-
ysis and optimization. To ensure that these conditions hold, we establish a
number of rules for the control flow graph generation algorithm:

A) There must always be at least one node with zero successors;
B) no node in the graph may have more than two successors; and
C) the CFG must be reducible.

Rule A guarantees the existence of at least one exit node. In some ap-
proaches, rule A is more restrictive and only allows exactly one exit node [32,
33, 13]. It is commonly regarded as good practice to have a single exit location
in a procedure [34], but multiple exit locations do occur in real world code.
Therefore, we use the laxer requirement.

1By aligned, we mean that the value must be a multiple of the magnitude of the next
bit. From a binary perspective, this means that the two least significant bits must be 0.
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It is also possible to have procedures without any exit nodes at all, as a
result of an unterminated infinite loop. However, these constructs rarely occur
in real code except in very simple programs and examples. Certain types of
programs, such as servers, employ a type of loop colloquially referred to as
pseudo-infinite loops. These resemble infinite loops in the sense that they
do not have a standard termination condition, but they can be terminated
through other means (exceptions, break statements).

Rule B is not a strict requirement for control flow graphs. Certain control
flow structures allow for more than two successors from a single node. In C,
this can be accomplished with a switch statement, resulting in an indirect
jump or a computed goto. However, this construct is not considered in this
project for simplicity’s sake. Multiple successors are not explicitly required to
model this type of branching; chains of binary conditional jumps will suffice
on architectures that do not support the required jump operations.

Inverse reducibility transformation

Inverse reducibility transformation is presented as a method for generating
arbitrary reducible control flow graphs by inverting the Ullman-Hecht T1-T2
analysis described in Section 2.2.2. These transforms are capable of reducing a
reducible CFG to a single node. It stands to reason that if applied in the other
direction, they can expand a single node into an arbitrary reducible CFG.

As Ullman and Hecht point out in their paper, similar inverses of these
transforms have been used in other, earlier works for generating random flow
graphs [15]. However, our report defines a constrained and simple version of
the inverse which can easily be applied to random code generation.

The definition of inverse T1 is simple. The operation of T1 on a node in a
graph eliminates self-loops on that node. Therefore, the T1′ on a node would
instead introduce a self-loop. As a graph does not allow for duplicate edges,
a node which already has a self-loop is not a candidate for transformation.
The rules for control flow graphs described above must also be respected. To
ensure that the rules are not broken, the following restrictions are placed on
which nodes T1′ can be applied to:

A) T1′ cannot be applied to the entry node, as this would add a predecessor
to the node, resulting in a graph where no node has zero predecessors.

B) T1′ cannot be applied to an exit node. If there is only one exit node in
the graph, the resulting graph would have no exit nodes.

C) T1′ can only be applied to nodes with a single successor. Then, the largest
number of successors a node can have after applying T1′ will always be
two.
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Figure 3.1. This example demonstrates how the result of T2 on two different
graphs is the same. Thus, T2 is not injective and is harder to invert than T1.

As given by the definition of reducible graphs in Section 2.2.2, a flow graph
is reducible if the subgraph consisting of its forward edges is acyclic and all
nodes in the subgraph are reachable from the entry node. Since all nodes in a
flow graph dominate themselves, a self-loop is a back edge and does not affect
the subgraph of forward edges. Therefore, adding a self-loop to a reducible
graph will not affect its reducibility.

Defining the inverse of T2 is slightly more difficult. For the purpose of this
explanation, x and n are graph nodes, where n is the only predecessor of x. x
does not necessarily have to be in the graph. Nodes to which a transform can
be applied to are called candidate nodes. x is a candidate node for T2, and n
is a candidate node for T2′. Performing T2(x) will result in the elimination of
x according to the rules of T2. However, performing T2′(n) will instead result
in x being added to the graph.

Performing T2 on node x in a graph will eliminate x from the graph.
Therefore, it is not possible to define the inverse of T2 as an operation on
node x, as it has yet to be added to the graph. Since the node being added
must have a single predecessor, the inverse of T2 on a given node n is instead
defined as an operation that creates the node x and appends it to n.

Furthermore, transform T2 is not injective (as shown in Figure 3.1); the
result of performing T2′ on a graph is not unique. This means that for graphs
G and G′ where G and G′ are CFGs, and T2(n ∈ G) = G′, there can exist
multiple graphs G. As such, there is no single function T2′ so that T2(T2′(n ∈
G)) = G.

However, by analyzing the possible combinations of node elimination that
can occur based on the previously established rules of CFG generation, it is
possible to construct an inverse of T2 with multiple resulting graphs. Which
combinations are possible depends on the number of successors of the selected
node. The combinations are summarized in figure 3.2.

If a candidate node n has zero successors, the transformation is trivial. T2
would normally have folded x into n, but since n would have no successors
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Figure 3.2. The possible T2′ transforms for zero, one and two successors. n
is the node which the transform is being applied to, x is the node being added
to the graph and s, s1 and s2 are the successors of n. Note that if any of the
edges to the successor nodes are self-loops or back edges, these examples will
no longer apply visually.
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after performing T2, it follows that x would have no successors as well. Thus,
the operation is to add x to the graph and create an edge n→ x.

If a candidate node n has one successor s, there are three possibilities for
transformation. In all three cases, x is added to the graph and the edge n→ x
is added. The possibilities are T2′a, T2′b and T2′c for one successor:

a) The edge n→ s is removed and the edge x→ s is added. This produces a
chain n→ x→ s.

b) The edge n → s is kept. This produces a conditional branch from n to x
or s.

c) x gets no edges other than n→ x. This produces a new exit node.

If a candidate node n has two successors s1 and s2, there are also three
possibilities. As with the case of one successor, x is added to the graph and
the edge n → x is added. The possibilities are T2′a, T2′b and T2′c for two
successors:

a) The edges x → s1 and x → s2 are added. Edges n → s1 and n → s2 are
removed. This produces a similar structure as before, but with x between
n and its former successors.

b) The edge x → s1 is added. The corresponding edge n → s1 is removed.
This produces a chain with x between n and s1. Note that which successor
is assigned to which node is arbitrary; either n precedes s1 and x precedes
s2, or vice versa.

c) Edges x → s1 and x → s2 are added. The edge n → s2 is removed. This
produces two conditional branches, one from n to x or s1 and another from
x to s1 or s2. As in the case of b, the assignment of successor is arbitrary.

These different combinations of possible transformations all conform to the
rules for CFG generation. Invalidating any possible exit nodes is impossible,
as the transformations only modify the predecessor edges of the successor
nodes s, s1 and s2; the successor edges are never modified. The number of
successors of these nodes will never be altered. The exception is when n has
no successors, in which case x will become the new exit node. As shown in
figure 3.2, none of the transformations will result in a node having more than
two successors.

Flow graph generation is briefly discussed in Ullman and Hecht’s pa-
per [15]. They present a graph grammar with which to represent simple control
flow concepts (while and if-else), and then prove that all graphs constructed
with this grammar are reducible. This approach is intuitive but not exhaus-
tive. It only covers a limited subset of reducible graphs and does not consider
many common control flow structures (if, do-while, break, continue).
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3.1.3 Data flow generation

Data flow generation is the process of constructing the contents of basic blocks
of the procedure being generated. This process involves generating random
instructions, temporaries/registers, immediate values and memory locations
and inserting these into the basic blocks. The method described in this paper
is a bottom-up approach to generating machine code in SSA form.

We choose SSA form as the code representation for two reasons. First, it
is very simple to generate code in SSA form as there is no need to manage
and allocate register usage. Second, as mentioned in Section 2.2.3, many
optimizations and analyses require the code to be in SSA form. As the purpose
of the random generation is to test the compiler, it is appropriate that the
code be in a form that will maximize the coverage of the generated test cases.

The method works by iteratively adding defining instructions for tempo-
raries that are being used, but have yet to be defined. Each temporary can
only be used and defined in a single basic block, with the exception of φ-
instructions which may use temporaries across block boundaries. For every
temporary in a basic block that is being used but has not been defined, we
attempt to resolve this use with different types of instruction.

There are some differences between the SSA form described here and what
is considered standard SSA. The only restriction standard SSA places on using
temporaries is that they must be defined before they are used. In other words,
the block in which a temporary is defined must dominate all blocks where it
is used. This means, for example, that temporaries defined in the entry block
can be used anywhere else in the procedure. In our SSA, use of temporaries
is restricted to the block in which they are defined, unless it is being used for
a φ-function.

This approach to SSA is similar to the stricter LSSA form described in [35].
In LSSA, temporaries cannot be used across basic block boundaries as they
can in SSA. Instead, congruences must be established between all temporaries
in all basic blocks. The difference between LSSA and the form used in this
report is that temporary uses across single-predecessor edges do not require a
φ-function, as described in Section 3.1.3.

The data flow generation method is broken up into three steps: branch gen-
eration, where branching instructions are added to the basic blocks; instruction
generation, in which the basic blocks are filled with random instructions; and
cleanup, where the procedure is cleaned to remove extraneous instructions.
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Branch generation

The first step in data flow generation is to finalize the earlier control flow
generation stage by adding the necessary branching instructions to each ba-
sic block. Section 3.1.1 describes three categories of branching instructions;
conditional branches, unconditional branches and return instructions. Ran-
dom instructions from these categories are selected according to the CFG and
inserted into the basic blocks.

There are three cases to consider: basic blocks with zero, one and two
successors. Basic blocks with one successor are trivial. As the branch taken
will always be to that single successor, it is enough to add an unconditional
branch at the bottom of the basic block. No temporary uses will be added as
unconditional branches do not depend on program state.

A basic block with zero successors is considered to be an exit node of the
procedure. A return instruction is inserted at the end of the basic block and
a register is added as a use operand according to the calling convention of the
target architecture. This will ensure that the procedure returns a value.

If a basic block has two successors, both an unconditional and a condi-
tional branch must be added. As the generated CFG does not encode any
information regarding which successor is the conditional, one of the successors
is chosen at random to be the conditional target and the other is chosen as
the unconditional one. Any necessary temporary or immediate operands are
added to the conditional branch according to the instruction definition. These
added temporaries form the foundation of the data flow in the basic block, as
they will be the first temporaries to be defined in the next step.

Instruction generation

The second step of data flow generation fills the basic blocks with random
instructions. As mentioned in Section 2.2.1, temporaries in SSA form can be
defined only once and defined before they are used. There is no restriction on
the number of times a temporary can be used. As a result of the bottom-up
construction of the basic blocks, all blocks will contain a number of tempo-
raries that are being used by instructions, but have not been defined by any
instruction. These temporaries will be resolved with a number of techniques
in order to build the data dependency graphs of the blocks.

Figure 3.3 shows an example of the instruction generation method for one
basic block. For each iteration of the generation algorithm, each basic block
is visited and the used-but-not-defined temporaries are enumerated. Then, a
method to resolve the temporary is chosen. Temporaries can be resolved with
an operator, an immediate move, a memory load, a φ-function, or they can be
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Iteration 1 Iteration 2 Iteration 3

φ φ

Iteration 4

Figure 3.3. The data dependence graph of a basic block being built from the
bottom up. Circles are operators, squares are immediate moves and diamonds
are conditional branch instructions. φ represents temporaries defined by φ-
functions. Every edge tail represents a temporary def and every edge head a
use.

replaced by another temporary altogether. Resolution of a temporary can also
be postponed to a later iteration to produce a more convoluted dependence
graph. If an operator, an immediate move or a memory load is used to resolve
a temporary, only instructions which define a temporary of the type being
resolved may be chosen. When all temporaries in all basic blocks have been
resolved, the instruction generation stage is complete.

Resolution methods

Resolving a temporary with an operator is straightforward. An operator ca-
pable of defining a temporary of the correct type is randomly selected and
inserted at the top of the basic block. As all operators must have at least
one temporary use, resolving a def with an operator will always expand the
dependence graph by producing more temporaries to be defined.

Resolving a temporary with an immediate move introduces a constant into
the data flow. An immediate move instruction does not use any temporaries,
and will therefore reduce the expansion of the dependence graph as shown in
iteration 3 of figure 3.3.

Memory load resolutions are capable of both expanding and reducing the
expansion of the dependence graph. This depends on whether or not the load
instructions take temporaries as input.

A temporary can be defined by adding a φ-function to the top of the
basic block. Using a φ-function to resolve a temporary has multiple effects.
A φ resolution closes the dependence graph locally, but expands it in the
predecessor basic blocks. A temporary of the correct type is taken from each
predecessor block to be the use temporary in the φ-function. In order to
prevent explosive growth of the dependence graph, it is preferable to select
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a pre-existing temporary in the predecessor rather than creating a new one
(which would require further resolution). In case a φ resolution is performed
in the entry block (which has no predecessors to source a temporary from),
an empty φ-function is added. These empty functions are used in the clean
up stage as arguments to the procedure.

Temporaries can also be defined by replacing them with an existing tem-
porary. An example is shown in figure 3.3; the two operators in iteration 2
end up sharing a temporary in iteration 3. The temporary being replaced is
the replacement target and the temporary being used for replacement is the
replacement candidate. The candidate can either be a temporary which has
yet to be defined or one which already has been. In the latter case, care must
be taken to avoid selecting candidates whose defining instruction comes after
any uses of the replacement target. If this condition is not upheld, the candi-
date will (after replacing the target) have a use before def and the SSA form
of the procedure will be broken.

The final type of instruction that can be added to a basic block are mem-
ory stores. However, stores cannot be used to resolve temporaries, as they
generally do not have any defining operands. In order to ensure that the gen-
erated code contains memory stores, we insert these after every temporary
resolution iteration. If a basic block has new, unresolved temporaries after all
outstanding temporaries in an iteration have been resolved, there is a small
random chance of adding a memory store to the block. This ensures that the
blocks are seeded with memory stores.

Clean up

Once the instruction generation is finished and all basic blocks are filled with
instructions, a basic cleanup is performed to remove redundant instructions.
The existence of the cleanup stage is justified, as generating the data flow
without considering the cleanup is simpler due to fewer assumptions and rules
regarding the format of the code.

For our SSA form, we state that φ-functions are only required for ba-
sic blocks which have more than one predecessor. In the previous stage, φ-
functions may have been added to blocks with only one predecessor. These
φ-functions are redundant, as there is no reason to disambiguate between a
single temporary. We remove these φ-functions and replace the temporaries
that they define with the single source temporary.

As mentioned in Section 3.1.3, when resolving a temporary with a φ-
function in the entry basic block, an empty φ-function is added. These φ-
functions are meaningless in the entry block, so we replace them with in-
structions and register uses that match the calling convention of the target
architecture. This lets us create functions that take input parameters.





Chapter 4

Implementation

This chapter discusses an implementation of the random code generation
methods described in Chapter 3. The compiler framework LLVM (and its
intermediate languages) is chosen as the code generator to work against.
Although the methods are general and target-independent, we have chosen
Hexagon, a general purpose digital signal processor (DSP) from Qualcomm [36]
as the generation and testing target.

Section 4.1 describes the compiler, LLVM, chosen for the evaluation im-
plementation as well as the relevant internal representations of LLVM. Sec-
tion 4.3 describes the textual format of LLVM’s Machine IR developed for the
implementation. Section 4.4 describes the implementation of the random code
generation algorithms and the parameters used for generation.

4.1 LLVM
LLVM is an optimizing compiler with industrial-strength code generation ca-
pabilities. LLVM’s versatility stems from its modular code processing pipeline.
Different analyses, optimizations and transformations in LLVM are encapsu-
lated in passes. Each pass performs some contained task, such as global value
numbering or dominator tree analysis. These passes are strung together to
produce the desired final result [37].

LLVM’s intermediate representation, LLVM IR (simply IR from here on),
is a RISC-like instruction set built to model a general computer architecture
at a high level of abstraction. The IR uses a set of high-level instructions to
operate on data stored in an infinite set of temporaries1. As the IR has both a

1Technically, the ”temporaries” in LLVM IR are named instructions which form a data
dependency graph. However, for all intents and purposes they can be thought of as tempo-
raries.

25
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Target-independent
passes

Instruction
selection

Target-dependent
passes Printing

IR IR MIR MIR assembly

Figure 4.1. A simple flowchart describing the flow of IR and Machine
IR through LLVM. Some steps and representations have been omitted for
simplicity. The target-independent passes include optimizations such as lin-
ear invariant code motion, strength reduction and dead code removal. The
target-dependent passes include register allocation, instruction scheduling and
target-specific optimizations.

textual and binary representation, it can be freely generated and manipulated
by any external program and fed into and out of LLVM [38].

As the IR is mostly target-independent, it must be converted into a for-
mat that is closer to the assembly language of the compilation target during
code generation. After instruction selection, the IR is lowered into a more
target-dependent (but still largely general) representation, called Machine IR.
Figure 4.1 shows the structure of the LLVM pipeline and which representations
are used between which stages.

Machine IR is closer in appearance to machine code than the IR. Each
Machine IR instruction either belongs to the instruction set of the compilation
target or is a pseudo-instruction which must be resolved before code emission.
Machine IR can be in both SSA and non-SSA form, unlike the IR. Instruction
operands can be immediates, basic blocks and memory locations, as well as
both physical and virtual registers. This representation is wholly internal
(unlike the IR) and has no textual representation outside of LLVM, other
than in the form of debugging printouts, which cannot be read back into
LLVM.

4.2 Hexagon
Hexagon is a general purpose very long instruction word (VLIW) digital signal
processor architecture from Qualcomm. Its primary application is as a sup-
porting DSP in Qualcomm’s Snapdragon system-on-chip, located in numerous
smartphones and tablets. As a VLIW architecture, Hexagon instructions are
collected into groups called bundles during compilation. Each bundle can con-
tain up to four instructions, and the instructions in a bundle are executed in
parallel. The architecture possesses a 32-bit and 64-bit register set, as well as
a set of 1-bit predicate registers for conditional jumps and predicated instruc-
tions [36].

Hexagon was chosen as the target for the experimental evaluation for sev-
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eral reasons. It is a well established embedded architecture, having shipped
1.2 billion Hexagon cores in 2012 [39]. As Hexagon’s parallelism depends
virtually entirely on compile-time optimization, correctness of the code gener-
ation is especially important for Hexagon. The architecture possesses features
that exercise many different parts of the compiler (predication, instruction
bundling) which lets us maximize the coverage of our testing.

4.3 MLL
To make testing of the post-instruction selection stages viable, a textual for-
mat of Machine IR must be constructed. This format must be readable and
writable from LLVM at any stage of code generation in order to generate file
deltas, write contained tests and emit randomly generated test cases. As of
this writing, LLVM has no such facility and only supports IR for this purpose.

We have constructed a textual format of Machine IR called MLL2 which
encapsulates the functionality needed to serialize Machine IR. An example of
MLL is shown in figure 4.2. This format can be emitted at any point after
instruction selection and then read back into LLVM to resume compilation.

Functions are preceded by a declaration containing the name of the func-
tion, along with a set of function-specific properties such as stack frame objects
and register classes of temporaries. The properties are in the form of tuples,
with the left item denoting the property name and the right item being the
property contents. This declaration is followed by series of basic block labels
and instructions.

Each instruction is defined by three parts: an instruction name as given in
LLVM’s target description, a series of operand tuples, and an optional series of
instruction-specific properties similar to the function properties. The operand
tuples consist of an operand type (such as register, temporary, immediate,
etc.) and its associated operand value.

4.4 Random code generator
The implementation of the random code generator has several parameters
which affect the generated code.

The flow graph generation algorithm has a parameter to control the size of
the graph. The algorithm performs a certain number of iterations consisting of
transforms T1′ and T2′. The number of iterations is dependent on a parameter
provided upon execution of the generator, called graph scale, GS for short.

2The file extension of LLVM IR files is .ll, so the Machine IR format becomes .mll.



28 CHAPTER 4. IMPLEMENTATION

function : fac ({ triple , hexagon -unknown -linux -gnu},
{regclasses , 0 -0|1 -0|2 -0|3 -0|4 -0|5 -0|6 -0|7 -2|8 -2|})
b0:

ENTRY {reg , R0}
COPY {temp , 5}, {reg , R0}
TFRI {temp , 6}, {imm , 1}
CMPEQri {temp , 7}, {temp , 5}, {imm , 0}
JMP_t {temp , 7}, {mbb , 2}
JMP {mbb , 1}

b1:
PHI {temp , 0}, {temp , 6}, {mbb , 1}, {temp , 2}, {mbb , 2}
PHI {temp , 1}, {temp , 5}, {mbb , 1}, {temp , 3}, {mbb , 2}
ADD_ri {temp , 3}, {temp , 1}, {imm , -1}
MPYI {temp , 2}, {temp , 0}, {temp , 1}
CMPEQri {temp , 8}, {temp , 3}, {imm , 0}
JMP_f {temp , 8}, {mbb , 1}
JMP {mbb , 2}

b2:
PHI {temp , 4}, {temp , 6}, {mbb , 0}, {temp , 2}, {mbb , 2}
COPY {reg , R0}, {temp , 4}
JMPret {reg , R31}
RETURN {reg , R0}

Figure 4.2. An MLL output example for the factorial function. The instruc-
tion set and compilation target is Hexagon.

Given the graph scale parameter, the number of iterations will be a random
number uniformly distributed in the interval [GS/3, GS].

Figure 4.3 shows the probability parameters for the T1′ and T2′ trans-
forms. As shown in the table, there is a 15% and 85% chance that a T1′

and T2′ transform will be performed, respectively. These probabilities stem
from the observation that approximately 10% of intraprocedural branches are
back edges. This number is supported by scanning the source code of LLVM
for the words if, case, while and for. The scan shows that 88% of these
occurrences are if and case, and the remaining 12% are while and for. This
makes 85-15 a reasonable assumption.

The probabilities for the variants of T2′ are also given. These are relative
to the base probability of 85%. Given that T2′ has been selected and the
chosen transform node has one successor, there is then a 40%, 50% and 10%
chance for T2′a, b and c, respectively. The low probability for c is to prevent
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0 succ. 1 succ. 2 succ.
T1′ 15% – 100% –

a) 100% 40% 33%
T2′ 85% b) – 50% 33%

c) – 10% 34%
Figure 4.3. The probabilities for control flow graph generation. The T1′ and
T2′ probabilities are absolute; for example, in an iteration there is an 85%
chance that T2′ will be performed. The subsequent probabilities are relative;
for example, given that T2′ was chosen and the node chosen for transformation
has one successor, there is a 40% chance that T2′a will be performed.

the graph from becoming too tree-like and limit the number of exit nodes to
a reasonable size.

Pseudocode for the graph generation algorithm is given in algorithm 1. As
T1′ can only be performed on nodes with one successor and no self-loop, T2′

is performed instead if there are no nodes that fulfill this criteria. All nodes
in a graph are candidates for T2′. The probability for selecting a candidate
node is uniform; all nodes (except those which are not valid candidates) have
the same probability of being selected.

Algorithm 1 CFG generation algorithm
1: procedure GenerateCFG
2: Iter ← uniform(GS/3, GS)
3: for every Iter do
4: Prob← uniform(0, 1)
5: if Prob ∈ [0, 0.85) then
6: perform T2′

7: else
8: Success← perform T1′

9: if ! Success then
10: perform T2′

11: end if
12: end if
13: end for
14: end procedure

For the data flow generation algorithm, we must define the different prob-
abilities for resolving temporaries in basic blocks. We use a sliding scale de-
pendent on an externally defined parameter called basic block scale (or BBS).
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When combined with the number of instructions in a basic block, this scale is
used to randomly pick a method for resolution. The probability of adding a
memory store to a basic block after resolving its temporaries is fixed at 10%.
Algorithm 2 shows the primary loop of the data flow generation algorithm.

Algorithm 2 Data flow generation algorithm
1: procedure GenerateData
2: while !Finished do
3: Finished← True
4: for all BB ∈ BasicBlocks do
5: Temps← undefined temporaries in BB
6: for all T ∈ Temps do
7: Finished← False
8: Method← select random method
9: resolve T with Method

10: end for
11: Prob← uniform(0, 1)
12: if Temps is not empty & Prob ∈ [0, 0.1) then
13: add memory store
14: end if
15: end for
16: end while
17: end procedure

Figure 4.4 shows the probability scale used in the implementation. Pstart

is the low end of the scale and Pend is the high end. The actual probability for
each method is given by linearly interpolating between Pstart and Pend. Given
the number of instructions in a basic block n, the basic block scale parameter
BBS and the P -values, the following formula is used to calculate the actual
probability P :

P = Pstart + (Pend − Pstart) ·
min(n,BBS)

BBS

As an example, presume that we are resolving a temporary in a basic
block which has six instructions, and our basic block scale is set to 10. This
provides us with BBS = 10, n = 6. The scaling factor will then be 6

10 = 0.6.
The probability of resolving this temporary with an operator is 0.65 + (0.25−
0.65) · 0.6 = 0.41. The scaling factor saturates when n = BBS, so for a basic
block with 10 instructions or more, the probability would be 0.25.
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Method Pstart Pend

Operator 65% 25%
Memory read 5% 5%
Immediate move 5% 15%
φ-function 5% 20%
Existing temporary 0% 25%
Postpone 20% 10%

Figure 4.4. The minimum and maximum probabilities for determining which
method to use for resolving a temporary. The actual probability slides linearly
along the scale depending on how many instructions are in the basic block.





Chapter 5

Evaluation

This chapter describes the experimental evaluation of the code generation and
testing methods detailed in Chapters 3 and 4.

5.1 Experimental setup
This section contains a description of the testing method and a summary of the
results. The following sections 5.2, 5.3 and 5.4 discuss the individual failures
and their causes.

The testing was performed by generating MLL code functions of varying
size. These sizes (small, medium and large) were determined by varying the
parameter values for graph and basic block scale, as shown in figure 5.1. 4000
test files were generated for each size category.

This test data was then fed into a modified version of llc, LLVM’s IR
compilation tool. The program was modified to accept MLL files and initi-
ate compilation directly after the instruction selection stage. Compilation of
the MLL files was performed at three optimization levels: O0 (no optimiza-

small medium large
graph scale 15 40 70
basic block scale 5 5 10
avg. number of blocks 6.92 18.1 31.1
avg. number of instructions 153 416 904
avg. number of loops 0.984 3.22 5.82

Figure 5.1. The parameters used to generate the three size categories and
basic statistics of the generated functions.
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tion), O1 (low optimization) and O3 (maximum optimization). Pairing the
optimization level groups with the generated code size groups gives nine in-
dividual pairs. These pairs are denoted by the names s0 for small O0, s1 for
small O1, etc. The implementation was made in LLVM 3.5, compiled with
g++ 4.8.4 and executed on an Intel Xeon E5607 2.27GHz running Gentoo 2.2.

The test results were only verified with the assertions and verifiers that
LLVM provides. It is difficult to construct an oracle to verify the produced
output for the given input, as this would either require multiple compiler-
independent implementations of the design, or a static code analyzer that can
determine if the produced output is equivalent to the input. Furthermore,
LLVM’s assertions were already present in the code and could be used with
no extra work involved.

In Section 2.4, we mentioned the random C code generator Csmith. The
advantage Csmith has over the testing approach in this report is that it has no
need for an external oracle; the oracle is implicitly given by the different com-
piler implementations. As the method in this report aims to generate code on
a lower level of abstraction, the generated code format (instruction represen-
tation, register models, etc.) is compiler-specific and will not be compatible
across compilers. Static code verification is a complex topic and is beyond the
scope of this thesis. Therefore, a simpler assertion-based verification method
is employed instead.

s0 s1 s3 m0 m1 m3 l0 l1 l3
Success 100% 94.9% 94.9% 100% 81.9% 81.3% 100% 72.3% 72.4%

Failure 1 0% 5.1% 5.05% 0% 18.8% 18.7% 0% 27.6% 27.5%

Failure 2 0% 0% 0% 0% .025% .025% 0% .1% .1%

Failure 3 0% .025% .025% 0% 0% 0% 0% 0% 0%

MTBF s0 s1 s3 m0 m1 m3 l0 l1 l3
Failure 1 - 18.57 18.76 - 4.314 4.335 - 2.618 2.638

Failure 2 - - - - 3708 3708 - 955.3 955.3

Failure 3 - 2365 2365 - - - - - -

Figure 5.2. A summary of the test results. The top table shows the number
of successful and failed test cases in the individual categories, and the number
of each failure type. The bottom table shows the mean time between failures
(failure rate) of the failure types.

In testing, three distinct failure types were encountered. All types were
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the result of assertion failure. Figure 5.2 details the success and failure rates
of the test groups. The figure also shows the mean time between failures
(or MTBF) of the individual failure types. This is the average number of
successful compilations before a failure of that type occurred.

5.2 Failure 1
Failure 1 was the most common of the three observed failures. It manifested
as the assertion failure in figure 5.3.

llvm/lib/CodeGen/DFAPacketizer.cpp:84:
void llvm::DFAPacketizer:: reserveResources(const
llvm::MCInstrDesc*): Assertion ‘CachedTable.count(StateTrans) != 0’
failed.

Figure 5.3. The assertion failure for failure 1.

The assertion is located in the target-independent portion of the instruc-
tion packetizer. The packetizer is a part of the instruction scheduling stage,
and is used (in Hexagon’s case) to combine instructions into what LLVM calls
bundles. Bundles are groups of instructions that are to be executed in parallel.
As Hexagon is a VLIW architecture, the compiler is responsible for scheduling
and bundling instructions to achieve the most efficient execution.

The Hexagon architecture is capable of executing four instructions in par-
allel. For this purpose, it has four instruction slots, numbered 0 to 3. Different
instructions can be executed in all, some or only one of these slots. In LLVM,
the slot requirements are encoded in the form of available resources, which
instructions must reserve in order to be bundled together. If an instruction is
to be added to a bundle but its resource has already been taken, it is not a
viable candidate for bundling.

LLVM’s packetizer uses a state machine to determine if instructions can be
bundled with each other. Each state is a possible combination of reserved re-
sources and each transition is a reservation of a certain resource. The resource
requirements (called itineraries) are encoded into the Hexagon instruction def-
initions in LLVM. Figure 5.4 shows a toy example with two resources: S0 and
S1; and three types of instructions: those which must use S0, those which
must use S1 and those which can use either. The example demonstrates re-
source reservation; there is no transition from state b on S0, as that resource
has already been taken by a previously bundled instruction.
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a

eb c

d

S0 S1

S1, S01 S0, S01

S01

S0, S1, S01

Figure 5.4. A toy example of a packetizer state machine with two resources
and three instruction types. a is the start state for new bundles. As instruc-
tions are added to the bundle, the state machine moves along the transitions
according to what resources the instructions require. If there is no available
transition, the instruction cannot be added to the bundle and the bundle is
closed.

5.2.1 Cause
The common element of all test cases that fail on this assertion is that they
all contain a store (ST) instruction followed by a Hexagon new-value jump
(NV/J) instruction. A truncated MLL example is given in figure 5.5. The
Hexagon V4 Programmer’s Reference Manual states “ST-class instructions
can be placed in Slot 1. However, in this case Slot 0 must contain a second
ST-class instruction.” [36] This is called a dual-store. The manual also states
that new-value jump instructions must be executed in slot 0. In the failing
test cases there is only one store instruction followed by a new-value jump,
so both instructions must be executed in slot 0. This is clearly impossible, so
the new-value jump should be placed in a separate bundle.

[...]
STriw_pred {fi, 0}, {imm, 0}, {temp, 9}
CMPEQn1_t_Jumpnv_nt_V4 {temp, 8}, {mbb, 2}
JMP {mbb, 3}

Figure 5.5. An example of a store instruction (STriw_pred) before a new-
value jump instruction (CMPEQn1_t_Jumpnv_nt_V4).
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However, in the Hexagon-specific portion of the packetizer, an attempt is
made to bundle the store with the new-value jump despite this not being a
valid configuration. The assertion is triggered when the packetizer attempts
to reserve the required resource for the new-value jump, but the packetizer
state machine lacks the necessary transition and fails.

In the source code of the packetizer, an assumption is made that the failing
call to reserveResources will be successful. The relevant excerpt is shown
in figure 5.6.

// Here, we are sure that "reserveResources" would succeed.
ResourceTracker->reserveResources(nvjMI);

Figure 5.6. A source code excerpt from HexagonVLIWPacketizer.cpp.

The packetizer does perform a test in isLegalToPacketizeTogether to
determine if the instruction being packetized (in this case, the STriw_pred)
can be ”glued” with an upcoming new-value jump. The procedure includes a
test for store instructions to prevent a new-value jump from being glued to a
store, but the test is never performed as the procedure erroneously considers
the two instructions to be independent of each other.

5.3 Failure 2
The second observed failure was from the assertion shown in figure 5.7.

llvm/include/llvm/ADT/ilist.h:215:
llvm::ilist_iterator<NodeTy>& llvm::ilist_iterator<NodeTy>::
operator--() [with NodeTy = llvm::MachineInstr;
llvm::ilist_iterator<NodeTy> = llvm::ilist_iterator
<llvm::MachineInstr>]: Assertion ‘NodePtr && "--’d off the
beginning of an ilist!"’ failed.

Figure 5.7. The assertion failure for failure 2.

This assertion is less obvious as the previous one, as it is occurring in
LLVM’s abstract list type implementation and could be the result of any in-
valid list operation. A debugger stack trace shows that the failure originates in
Hexagon’s conditional transfer optimization pass. This pass attempts to con-
vert a conditional multiplexer instruction into a new-value predicated transfer.
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A conditional multiplexer (or just mux) instruction assigns one of two
values to a destination register based on the value of a predicate register. A
new-value predicated transfer is simply a regular copy (immediate or register-
to-register) that has been predicated. Converting one instruction to the other
saves one clock cycle. The example given in the source code is shown in
figure 5.8.

{p0 = cmp.eq(r0,r1)}
{r3 = mux(p0,#1,#3)}

becomes
{p0 = cmp.eq(r0,r1)
if (p0.new) r3 = #1
if (!p0.new) r3 = #3}

Figure 5.8. The example for conditional transfer optimization given in
HexagonSplitTFRCondSets.cpp. The top code sample requires two bundles
while the bottom sample only requires one. Note that the example solely
uses immediates as the source parameters for the selection; this is not a strict
requirement.

5.3.1 Cause
The common features of the test cases for failure 2 are twofold; they all con-
tain a conditional mux (named condset in LLVM) at or near the top of a basic
block, and both source operands are the same temporary. During register al-
location, the mux is allocated the same register for all three register operands:
destination and the two sources. The examples in figure 5.9 show the gener-
ated MLL and a debug printout of the same code after register allocation.

When performing the optimization to convert this instruction into a new-
value predicated transfer, the pass makes a faulty assumption. It assumes that
both source operands are not the same as the destination and that the mux
is not at the top of the basic block. The source code excerpt in figure 5.10
shows the problem.

If both source and destination operands are the same register, no new
instructions will be added. This is the correct optimization to perform. How-
ever, if the mux was located at the top of the basic block, the instruction
iterator MII will underflow after the mux instruction MI is removed, causing
the assertion failure.
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b1:
TFR_condset_rr {temp, 1}, {temp, 14}, {temp, 2}, {temp, 2}
[...]

BB#1:
Live Ins: %P1 %R0
Predecessors according to CFG: BB#3

%R0<def> = TFR_condset_rr %P1<kill>, %R0<kill>, %R0
[...]

Figure 5.9. An example of a mux at the top of a basic block. The top block
is the generated MLL and the bottom block is the Machine IR debug printout
after register allocation. In the top block, temporary 1 is the destination,
temporary 14 is the predicate and temporary 2 is the source.

// Minor optimization: do not emit the predicated copy if the source
// and the destination is the same register.
if (DestReg != SrcReg1) {

[...]
}
if (DestReg != SrcReg2) {

[...]
}
MII = MBB->erase(MI);
--MII;

Figure 5.10. The source code from HexagonSplitTFRCondSets.cpp respon-
sible for the failure. The semantics for adding the new-value conditional trans-
fer instructions are not relevant and have been omitted for simplicity.

5.4 Failure 3
The third failure was only observed once in all 12000 test cases. The assertion
is given in figure 5.11.

llvm/include/llvm/Support/BranchProbability.h:34:
llvm::BranchProbability::BranchProbability(uint32_t, uint32_t):
Assertion ‘d > 0 && "Denomiator cannot be 0!"’ failed.

Figure 5.11. The assertion failure for failure 3. The typo of “denominator”
is as is written in LLVM’s source code.



40 CHAPTER 5. EVALUATION

a

b

c

a

b1 b2

c

Figure 5.12. Examples of triangle and diamond shapes in control flow
graphs. If the blocks named b only contain predicable instructions, those
blocks can be merged into a and c and become one single basic block.

The assertion is located in the branch probability analysis pass, called by
the Hexagon new-value jump optimization pass. However, the original cause
of the failure lies in LLVM’s if-conversion pass and Hexagon’s instruction
definition implementation.

If-conversion is an optimization to simplify control flow graphs by folding
basic blocks consisting of predicable instructions into their predecessor. Pred-
icable instructions are instructions which only perform their operation based
on a computed condition or predicate register value [40]. In Hexagon, many
instructions are predicable which makes the architecture a suitable target for
this optimization.

Candidate subgraphs for if-conversion are shown in figure 5.12. If the
control flow graph contains a diamond or triangle shape and the branching
block or blocks consist solely of predicable instructions, these blocks can be
eliminated by folding them into their predecessor, resulting in a single large
block.

5.4.1 Cause
The cause of the failure lies in a badly performed if-conversion. Observe the
machine code in figure 5.13. Block 2 forms a triangle with blocks 4 and 5. If
all of the instructions in block 2 are predicable, all three blocks will be merged
and the instructions in block 2 will be predicated based on the condition of
the jump in block 4.

The branch instruction used in block 4 to jump to block 2 (JMP_fnew_t) is
what Hexagon calls a speculative jump. These branch instructions are denoted
by the suffix new_t or new_f; the jump is given a branch predictor hint during
compilation to potentially speed up execution. The hint is either t or nt for
taken and not taken, respectively.

The source code of HexagonInstrInfo.cpp::RemoveBranch (used by the
branch folder to complete the if-conversion) shows that the only instructions
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BB#2:
Predecessors according to CFG: BB#4

%R0<def> = LDriw %R29<kill>, 16
%R0<def> = SXTH %R0<kill>
STriw %R29<kill>, 16, %R0<kill>
JMP <BB#5>, %PC<imp-def>

Successors according to CFG: BB#5

BB#4:
Live Ins: %R3
Predecessors according to CFG: BB#0 BB#1 BB#3

%R0<def> = ASRH %R3<kill>
%R1<def> = OR_rr %R0, %R0
%P0<def> = CMPEQrr %R1<kill>, %R0<kill>
JMP_fnew_t %P0<kill>, <BB#2>, %PC<imp-def,dead>

Successors according to CFG: BB#2 BB#5

BB#5:
Predecessors according to CFG: BB#2 BB#4

%R0<def> = LDriw %R29<kill>, 16
DEALLOCFRAME %R29<imp-def>, %R30<imp-def>, [...]
TCRETURNtg 928567614, %R0<imp-use,kill>

Figure 5.13. The post-register allocation dump of the failing test case. Parts
of the dump have been omitted for clarity.

it is capable of removing when removing a branch are the simple branch in-
structions JMP, JMP_t and JMP_f. This means that after block 2 has been
predicated and blocks 2 and 4 have been merged, the JMP_fnew_t instruction
remains in the middle of the new block. This code is invalid for two reasons.
First, the instruction retains a reference to the old block 2, a basic block that
was removed in the merge. Second, the block contains a branch instruction
that is not located at the bottom of the block. Figure 5.14 shows the resulting
machine dump.
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Merging into block: BB#4:
Live Ins: %R3
Predecessors according to CFG: BB#0 BB#1 BB#3

%R0<def> = ASRH %R3<kill>
%R1<def> = OR_rr %R0, %R0
%P0<def> = CMPEQrr %R1<kill>, %R0<kill>
JMP_fnew_t %P0, <BB#-1>, %PC<imp-def,dead>
%R0<def> = LDriw_cNotPt %P0, %R29<kill>, 16, %R0<imp-use,undef>
%R0<def> = SXTH_cNotPt_V4 %P0, %R0<kill>, %R0<imp-use,undef>
STriw_cNotPt %P0, %R29<kill>, 16, %R0<kill>

Successors according to CFG: BB#5

Figure 5.14. A machine dump of block 4 after the failed if-conversion. Note
that the old branch instruction from block 4 is still in the middle of the block.
The instruction also has a broken block reference (<BB#-1>), as block 2 was
removed in the merge.
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5.5 Analysis
The results of the testing summarized in figure 5.2 tells us that the most
common failure is failure 1, followed by 2 and 3. No failures occurred at
optimization level o0. This is due to the fact that none of the optimizations in
which the failures originate are run at that level; new-value jump optimization,
if-conversion and packetization are only run at o1 or higher. The chance of
experiencing failures 1 and 2 goes up with the code size, but not for failure
3. This is because failure 3 was only triggered by a very specific combination
of instructions, and having more instructions makes it harder to fulfill that
requirement.

Although the three failures have widely varying causes, there are still a
number of interesting similarities between them. They are all caused by gen-
erating code which violates some invariant of the Hexagon backend. For the
first failure, the backend assumes that it will be able to reserve the resources
for a new-value jump despite it being packeted with a store; for the second
failure, the backend assumes that there will never be a conditional mux at the
top of a basic block and for the third failure, the backend assumes that no
pass will ever attempt to remove a branch after the simple branch instructions
have been optimized out by some other pass.

A possible reason for why these failures have never occurred before in
production code is due to the execution order of passes and the semantics of
LLVM’s instruction selector. It is possible that a store will never be selected
before a jump, preventing failure 1 from appearing. Failure 2 will most likely
never occur due to optimization during instruction selection; after all, there is
no need to conditionally select between the same temporary, which makes the
instruction in question a no-op. Failure 3 would never be considered a problem
if the order of the passes prevents the observed behavior; for example, if the
speculative jump optimization pass occurs strictly after all passes that modify
the CFG.

From these observations, it is absolutely possible that these defects do not
currently pose an issue for code generation. Nevertheless, these defects could
still become apparent in the future if changes are made to instruction selection,
selection patterns or other parts of the Hexagon backend in LLVM. We can
also conclude that our methods are capable of uncovering defects which cannot
be found with other testing methods, such as source code randomization of
higher level languages like C.





Chapter 6

Conclusion

This chapter summarizes the work done during this project and presents the
conclusions drawn from the experimental evaluation. Future work and im-
provements are discussed.

We proposed that random testing and generating random programs on a
low level is a suitable method for testing the code generation stages of a modern
compiler. We designed a method to generate random low level code functions
by employing inverse reducibility transforms for control flow generation and a
bottom-up temporary resolution algorithm for data flow generation.

We implemented this design in a modern compiler framework, LLVM, and
developed a method to emit and inject a textual format of LLVM’s post-
instruction selection representation, Machine IR, out of and into LLVM. The
embedded digital signal processor architecture Hexagon was chosen as the
testing and generation target. A testing suite of 12000 randomly generated
Machine IR files was assembled and split into three size categories. These
files were subsequently compiled for three different optimization levels and
any errors were logged and categorized.

Three different failure types were observed during testing. All three were
triggered by assertion failures in LLVM and Hexagon’s target-specific backend
implementation. The three failures were primarily caused by unexpected in-
structions and instruction patterns that the Hexagon backend was not capable
of handling or handled incorrectly. We believe that this is the first time these
defects have been observed, as all of the involved code is very well exercised
during compilation. For this reason, we conclude that these patterns will not
occur in production code.

Although we conclude that the observed failures will not be observed dur-
ing real compilation of C or IR code, the evaluation shows that it is possible
to generate code patterns in a lower level representation that can cause com-
pilation failure. We believe this is compelling evidence that the methods and
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testing approach described in this paper are an important step towards greater
robustness of compilers and the code they produce.

6.1 Future work
There are many improvements and additions in the testing and generation
methods that can be made to the work in this thesis. This section describes
potential future improvements.

6.1.1 Extended data flow model
The current data flow generation algorithm only takes temporary definition
order into account when generating instructions, as a result of the rules of
SSA form. However, there are similar restrictions on use of memory. Access-
ing a portion of memory before it has been initialized is undefined behavior.
As the algorithm does not attempt to initialize memory locations before us-
age, extending the SSA form with a “memory SSA” [41, 42] is a meaningful
improvement.

Certain types of instruction are not considered for generation. This in-
cludes features such as calls, memory barriers, intrinsic operations, indirect
jumps and probably many more. Extending the model to deal with these
features would increase the testing coverage.

The data flow generation algorithm also has no sense of what the different
values in temporaries mean. If the memory model were extended to give the
algorithm a sense of which values are integers, pointers, etc., the robustness
of the memory model would improve.

All of the improvements touched upon here could allow the code to be run
on the target architecture, permitting testing of not only the compiler but also
the architecture implementation itself.

6.1.2 Test minimization
When generating the random data sets for testing the compiler, much time is
spent finding the common element in all the test cases. This is manual and
tedious work, involving stepping through the failing execution path manually
with a debugger to determine the cause of the failure.

Delta debugging is a technique in which test cases are iteratively split
or minimized to produce the smallest possible failing example of the given
case [22, 43]. Delta debugging is intended to be fully automated, allowing
the tester to focus on solving the issue rather than finding its cause. Delta
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debugging is very applicable to this thesis, as the test data (textual low level IR
code) follows a strict structure and should be easy to automatically minimize.

6.1.3 Generalized implementation
The current implementation described in Chapter 4 is very specific to Hexagon.
It currently does not support any other architecture, despite the algorithms
being largely general. This was due to difficulty in extracting certain portions
of the architecture description from LLVM, such as calling and return conven-
tions, as well as some operand types (immediate size/alignment/signedness).

Constructing an independent architecture description that fits the genera-
tion methods better would make it possible to create an implementation that
can generate MLL files for any architecture, improving the coverage of the
testing.
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