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Abstract

This dissertation proposes a combinatorial model, program representa-
tions, and constraint solving techniques for integrated register allocation and
instruction scheduling in compiler back-ends. In contrast to traditional com-
pilers based on heuristics, the proposed approach generates potentially opti-
mal code by considering all trade-offs between interdependent decisions as a
single optimization problem.

The combinatorial model is the first to handle a wide array of global regis-
ter allocation subtasks, including spill code optimization, ultimate coalescing,
register packing, and register bank assignment, as well as instruction schedul-
ing for Very Long Instruction Word (VLIW) processors. The model is based
on three novel, complementary program representations: Linear Static Single
Assignment for global register allocation; copy extension for spilling, basic co-
alescing, and register bank assignment; and alternative temporaries for spill
code optimization and ultimate coalescing. Solving techniques are proposed
that exploit the program representation properties for scalability.

The model, program representations, and solving techniques are imple-
mented in Unison, a code generator that delivers potentially optimal code
while scaling to medium-size functions. Thorough experiments show that
Unison: generates faster code (up to 41% with a mean improvement of 7%)
than LLVM (a state-of-the-art compiler) for Hexagon (a challenging VLIW
processor), generates code that is competitive with LLVM for MIPS32 (a
simpler RISC processor), is robust across different benchmarks such as Medi-
aBench and SPECint 2006, scales up to medium-size functions of up to 1000
instructions, and adapts easily to different optimization criteria.

The contributions of this dissertation are significant. They lead to a com-
binatorial approach for integrated register allocation and instruction schedul-
ing that is, for the first time, practical (it robustly scales to medium-size
functions) and effective (it yields better code than traditional heuristic ap-
proaches).



Sammanfattning

Denna avhandling presenterar en kombinatorisk modell, programrepresen-
tationer, och villkorsprogrammeringstekniker för integrerad registerallokering
och instruktionsschemaläggning i kompilatorer. Till skillnad från traditionella
kompilatorer som baseras på heuristiker genererar vår metod kod som är po-
tentiellt optimal genom att ta hänsyn till alla interaktioner och beroenden
som ett enda optimeringsproblem.

Den kombinatoriska modelen är den första som täcker en mycket omfat-
tande samling deluppgifter från global registerallokering, som spillkodsopti-
mering, fullkomlig coalescing, registerpackning och registerbankstilldelning,
samt instruktionsschemaläggning för Very Long Instruction Word (VLIW)
processorer. Modelen baseras på tre nya, kompletterande programrepresen-
tationer: Linear Static Single Assignment för global registerallokering; copy
extension för spilling, enkel coalescing, och registerbankstilldelning; och alter-
native temporaries för spillkodsoptimering och fullkomlig coalescing. Avhan-
dlingen presenterar problemlösningstekniker som utnyttjar egenskaper hos
programrepresentationerna för att förbättra skalbarheten.

Modellen, programrepresentationerna, samt problemlösningsteknikerna im-
plementeras i Unison, en kodgenerator som levererar potentiellt optimala re-
sultat för kod upp till medelstora funktioner. Omfattande experiment visar
att Unison: genererar snabbare kod (upp till 41% med en genomsnittlig
förbättring på 7%) än LLVM (en världsklass kompilator) för Hexagon (en ut-
manande VLIW processor), genererar kod som är i samma klass som LLVM
för MIPS32 (en enklare RISC processor), är robust för olika benchmarks som
MediaBench och SPECint 2006, hanterar upp till medelstora funktioner med
upp till 1000 instruktioner, och anpassas lätt till olika optimeringsmål.

Denna avhandlingens bidrag är betydande. De leder till en kombinatorisk
metod för integrerad registerallokering och instruktionsschemaläggning som
för första gången är både praktiskt (den hanterar upp till medelstora funk-
tioner med robusthet) och effektiv (den levererar bättre kod än traditionella
heuristiska metoder).
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Chapter 1

Introduction

This chapter introduces the register allocation and instruction scheduling problems;
defines the thesis, research methods, and structure of the dissertation; and sum-
marizes our proposed approach. Section 1.1 introduces register allocation and in-
struction scheduling. Section 1.2 presents the thesis of this dissertation. Section 1.3
discusses the approach proposed in the dissertation in further detail. Section 1.4
describes the methods employed in the research. Section 1.5 summarizes the main
contributions of the dissertation. Section 1.6 lists the underlying publications. Sec-
tion 1.7 outlines the structure of the dissertation.

1.1 Background and Motivation

Compilers are computer programs that translate a program written in a source pro-
gramming language into a target language, typically assembly code [18]. Compilers
are often structured into a front-end and a back-end. The front-end translates the
source program into a processor-independent intermediate representation (IR). The
back-end generates assembly code (hereafter just called code) corresponding to the
IR for a particular processor1. This dissertation proposes combinatorial optimiza-
tion models and techniques to construct compiler back-ends that are simpler, more
flexible, and deliver better code than traditional ones.

Code generation. Compiler back-ends solve three main tasks to generate code:
instruction selection, register allocation, and instruction scheduling. Instruction
selection replaces abstract IR operations by specific instructions for a particular
processor. Register allocation assigns temporaries (program variables in the IR) to
processor registers or to memory. Instruction scheduling reorders instructions to
improve their throughput. This dissertation focuses on two of the three main code
generation tasks, namely register allocation and instruction scheduling.

1The dissertation uses the terms processor and instruction set architecture interchangeably.
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Register allocation and instruction scheduling. Register allocation and in-
struction scheduling are NP-hard combinatorial problems for realistic processors [12,
16,45]. Thus, we cannot expect to find an algorithm that delivers optimal solutions
in polynomial time. Furthermore, the two tasks are interdependent [38]. For ex-
ample, aggressive instruction scheduling often leads to programs that require more
registers to store their temporaries, which makes register allocation more difficult.
Conversely, doing register allocation in isolation imposes a partial order among
instructions, which makes instruction scheduling more difficult.

Besides the main task of assigning temporaries to processor registers or to mem-
ory, register allocation is associated with a set of subtasks that are typically con-
sidered together:

• spilling: decide which temporaries are stored in memory and insert memory
access instructions to implement their storage;

• coalescing: remove unnecessary register-to-register move instructions; and

• packing: assigning several small temporaries to the same register.

Coalescing can be classified as basic or ultimate, depending on whether the values
of the temporaries related to the targeted move instruction are taken into account
in the coalescing decision. Some definitions of register allocation also include one
or more of the following subtasks:

• spill code optimization: remove unnecessary memory access instructions in-
serted by spilling;

• register bank assignment: allocate temporaries to different process register
banks and insert register-to-register move instructions across banks; and

• rematerialization: recompute reused temporaries as an alternative to storing
them in registers or memory.

The main task of instruction scheduling is to reorder instructions to improve
their throughput. The reordering must satisfy dependency and resource constraints.
The dependency constraints are caused by flow of data and control in the program
and impose a partial order among instructions. The resource constraints are caused
by limited processor resources (such as functional units and buses), whose capacity
cannot be exceeded at any point of the schedule.

Instruction scheduling is particularly challenging for Very Long Instruction
Word (VLIW) processors, which exploit instruction-level parallelism by executing
statically scheduled bundles of instructions in parallel [28]. The subtask of grouping
instructions into bundles is referred to as instruction bundling.

Register allocation and instruction scheduling can be solved locally or globally.
Local code generation works on single basic blocks (sequence of instructions without
control flow); global code generation increases the optimization scope by working
on entire functions.
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Figure 1.1: Traditional code generation.

Traditional approaches. Traditional code generation in the back-ends of indus-
trial compilers such as GCC [29] or LLVM [63] is arranged in stages as depicted in
Figure 1.1: first, instructions are selected for a certain processor; then, the selected
instructions are scheduled; and, finally, temporaries are assigned to either processor
registers or memory. Additionally, it is common to reschedule the final instructions
to accommodate memory access and register-to-register move instructions inserted
during register allocation. Solving each stage in isolation is convenient from an engi-
neering point of view and yields fast compilation times. However, staging precludes
the possibility of generating optimal code by disregarding the interdependencies
between the different tasks [56].

Traditional back-ends resort to heuristic algorithms to solve each stage, as taking
optimal decisions is commonly considered either too complex or computationally
infeasible. Heuristic algorithms (also referred to as greedy algorithms [19]) solve
a problem by taking a sequence of greedy decisions based on local criteria. For
example, list scheduling [81] (the most popular heuristic algorithm for instruction
scheduling) schedules one instruction at a time and never reconsiders the schedule
of a instruction. Common heuristic algorithms for register allocation include graph
coloring [15, 16, 35] and linear scan [75]. Because of their greedy nature, heuristic
algorithms cannot, in general, find optimal solutions to hard combinatorial code
generation problems. Furthermore, the use of these algorithms complicates captur-
ing common architectural features and adapting to new architectures and frequent
processor revisions.

To summarize, traditional back-ends are arranged in stages and apply heuristic
algorithms to solve each stage. This set-up delivers fast compilation times but
precludes by construction optimal code generation and complicates adapting to
new architectures and processor revisions.

Combinatorial optimization. Combinatorial optimization is a collection of tech-
niques to model and solve hard combinatorial problems, such as register allocation
and instruction scheduling, in a general manner. Prominent combinatorial opti-
mization techniques include constraint programming (CP) [85], integer program-
ming (IP) [71], and Boolean Satisfiability (SAT) [37].

These techniques approach combinatorial problems in two steps: first, a problem
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is captured as a formal model composed of variables, constraints over the variables,
and possibly an objective function that characterizes the quality of different variable
assignments. Then, the model is given to a generic solver which automatically finds
solutions consisting of valid assignments of the variables or proves that there is none.

The most popular combinatorial optimization technique in the context of code
generation is IP. IP models consist of integer variables, linear equality and inequality
constraints over the variables, and a linear objective function to be minimized or
maximized. IP solvers proceed by interleaving search with linear relaxations where
the variables are allowed to take real values. More advanced IP solving techniques
such as column generation [21] and cutting-plane methods [72] are often applied to
solve large combinatorial problems.

An alternative combinatorial optimization technique which has been less ex-
plored in the context of code generation is Constraint Programming (CP). From
the modeling point of view, CP can be seen as a generalization of IP where the vari-
ables typically take values from a finite integer domain, and the constraints and the
objective function are expressed by general relations on the problem variables. Of-
ten, such relations are formalized as global constraints that express problem-specific
relations among several variables. CP solvers proceed by interleaving search with
constraint propagation. The latter discards values for variables that cannot be
part of any solution to reduce the search space. Global constraints play a key
role in propagation as they are associated to particularly effective propagation
algorithms. Advanced CP solving techniques include decomposition, symmetry
breaking, dominance constraints [91], programmable search, nogood learning, and
randomization [94]. Chapter 2 discusses in more depth how combinatorial problems
are modeled and solved with CP.

Combinatorial approach. An alternative approach to traditional, heuristic code
generation is to apply combinatorial optimization techniques. This approach trans-
lates the register allocation and instruction scheduling tasks into combinatorial
models. The combinatorial problems corresponding to each model are then solved
in integration with a generic solver as shown in Figure 1.2.

As opposed to traditional approaches, combinatorial code generation is poten-
tially optimal, as it integrates the different code generation tasks and solves the
integrated problem with combinatorial optimization techniques that consider the
full solution space. The use of formal, combinatorial models eases the construc-
tion of compiler back-ends, simplifies adapting to new architectures and processor
revisions, and enables expressing different optimization goals accurately and unam-
biguously. Decoupling modeling and solving permits leveraging automatically the
continuous advances in different combinatorial optimization techniques [62].

Limitations of combinatorial code generation. Despite the multiple advan-
tages of combinatorial code generation, the state-of-the-art approaches prior to this
dissertation suffer from at least one of two main limitations that preclude their ap-
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Figure 1.2: Combinatorial code generation.

plication to compilers: either they are incomplete because they do not capture all
subtasks of code generation that are necessary for high-quality or even correct solu-
tions, or they do not scale beyond small programs consisting of tens of instructions.
Existing combinatorial approaches to integrated code generation are thoroughly
surveyed in Publication A (see Section 1.6) and related to the contributions of this
dissertation in Chapter 3.

Research goal. The goal of our research is to devise a combinatorial approach for
integrated register allocation and instruction scheduling that is practical and hence
usable in a modern compiler. Such an approach must capture all main subtasks of
register allocation and instruction scheduling while scaling to programs of realistic
size. Additionally, to be practical a combinatorial approach must be robust, that
is, must deliver consistent code quality and compilation times across a significant
range of programs.

1.2 Thesis Statement

This dissertation proposes a constraint programming approach to integrated reg-
ister allocation and instruction scheduling. The thesis of the dissertation can be
summarized as follows:

The integration of register allocation and instruction scheduling using constraint
programming is practical and effective for medium-size problems.

The approach is practical as medium-size problems can be robustly solved in a
few seconds and effective since it yields better code than traditional approaches.
The dissertation shows that the combination of constraint programming (CP) with
custom program representations yields an approach to integrated register allocation
and instruction scheduling that delivers on the promise of combinatorial optimiza-
tion, since it a) incorporates all main subtasks of register allocation and instruction
scheduling, which enables its application to compilers; b) scales up to medium-size
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problems (functions with hundreds of instructions); c) behaves robustly across dif-
ferent benchmarks; and d) yields better code than traditional approaches.

CP has several characteristics that make it suitable to model and solve the
integrated register allocation and instruction scheduling task. On the modeling
side, global constraints can be used to capture the main structure of different code
generation subtasks such as register packing and scheduling with limited processor
resources. Thanks to these high-level abstractions, compact CP models can be
formulated that incorporate all main subtasks of register allocation and instruction
scheduling while avoiding an explosion in the number of variables and constraints.
On the solving side, global constraints reduce the search space by increasing the
amount of propagation. Also, CP solvers are amenable to customization and user-
defined solving techniques that exploit problem-specific knowledge to improve their
scalability and robustness.

1.3 Our Approach: Constraint-based Code Generation

The CP-based code generation approach proposed in this dissertation is organized
as follows. An IR of a function and a processor description are taken as input.
The function is assumed to be in static single assignment (SSA) form, a program
form where temporaries are only defined once [20]. Instruction selection is run
using a heuristic algorithm, yielding a function in SSA form with instructions of
the targeted processor. The function is gradually transformed into a custom rep-
resentation that is designed to enable a constraint model that captures the main
subtasks of integrated register allocation and instruction scheduling.

The register allocation and instruction scheduling tasks for the transformed
function are translated into a single constraint model that also takes into account
the characteristics and limitations of the target processor. A presolving phase refor-
mulates the model into an equivalent one with a reduced solution space, increasing
the robustness of the approach.

The combinatorial problem captured by the model is finally solved by applying
a decomposition scheme. The decomposition exploits the structure of the program
transformations to split the problem into multiple components that are solved in-
dependently, improving the scalability of the approach. The solver can be easily
adapted to optimize according to different criteria such as speed or code size by in-
stantiating a generic objective function. Figure 1.3 illustrates how code generation
is arranged in our approach.

Thorough experiments show that:

• in comparison with traditional approaches, the code generated by this disser-
tation’s approach is of similar quality for simple processors such as MIPS32 [93],
and of higher quality for challenging VLIW processors such as Hexagon [77];

• the approach is robust across different benchmarks and scales for medium-size
functions up to some thousand instructions; and
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Figure 1.3: Constraint-based code generation as proposed in this dissertation.

• the code generator adapts easily to different optimization criteria.

1.4 Methods

This dissertation is based on quantitative research and follows a deductive approach,
as is usual in the areas of compiler construction and constraint programming. The
employed method combines descriptive, applied, and experimental research [51].

Descriptive research. The existing approaches to combinatorial register alloca-
tion and instruction scheduling have been studied using a classical survey method-
ology. A detailed taxonomy of the existing approaches has been built to enable a
critical comparison, identify trends, and expose unsolved problems. This study is
reflected in Publication A (see Section 1.6).

Applied and experimental research. The initial hypothesis of this research
is that the integration of register allocation and instruction scheduling using con-
straint programming is practical and effective. This hypothesis has been refined and
tested using applied and experimental research methods in an interleaved fashion.
Taking the survey as a start point, combinatorial models and dedicated program
representations have been constructed that extend the capabilities of the state-of-
the-art approaches. The models and the program representations exploit exist-
ing theory from constraint programming (such as global constraints) and compiler
construction (such as the SSA form). Constructing the models and the program
representations has been interleaved with experimental research via a software im-
plementation. The experiments have been designed to serve two purposes: a) refine
and test the hypothesis, and b) validate the correctness of the models and program
representations. The model and its implementation have been evolved incremen-
tally, by increasing in each iteration the scope of the task modeled (that is, solving
more subtasks in integration) and the complexity of the targeted processors. This
process has been arranged in four main iterations:
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1. building a simple model of local instruction scheduling for a simple general-
purpose processor;

2. extending the model with local register allocation for a more complex VLIW
digital signal processor;

3. increasing the scope of the model to entire functions; and

4. augmenting the model with the subtasks of spill code optimization and ulti-
mate coalescing.

Software benchmarks have been used as input data to conduct experimental
research after each iteration. The benchmarks have been chosen accordingly to the
application domain of each targeted processor: SPECint 2006 [46] for the general-
purpose processor MIPS32; MediaBench [64] for the VLIW digital signal processor
Hexagon. SPECint 2006 and MIPS32 are used for experimentation in Publica-
tion B, while MediaBench and Hexagon are used in Publication C (see Section 1.6).
The experimental results are compared to the existing approaches using the classi-
fication built during the descriptive research phase.

The following quality assurance principles have been taken into account in the
conduction of the experimental research:

• validity (different benchmarks and processors are used),

• reliability (experiments are repeated and the variability is taken into account),
and

• replicability (the procedures to replicate the experiments are described in
detail in the publications).

1.5 Contributions

This dissertation makes five substantial contributions to the areas of compiler con-
struction and constraint programming:

C1 a thorough survey of existing combinatorial approaches to register allocation
and instruction scheduling;

C2 a combinatorial model of global register allocation and local instruction schedul-
ing that for the first time integrates most of their subtasks, including spilling,
ultimate coalescing, packing, spill code optimization, register bank assign-
ment, and instruction scheduling and bundling for VLIW processors;

C3 program representations and transformations that enable different features of
the combinatorial model, including

a) Linear SSA (LSSA) form (for global register allocation);
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b) copy extension (for coalescing, spilling, and register bank assignment);
and

c) alternative temporaries (for spill code optimization and ultimate coa-
lescing);

C4 a solving technique that exploits the LSSA properties to decompose the com-
binatorial problem for scalability and robustness; and

C5 extensive experiments demonstrating that the approach is robust across dif-
ferent benchmarks, scales up to medium-size functions, adapts easily to dif-
ferent optimization criteria, and yields better code than traditional heuristic
approaches.

These contributions are explained in further detail and related to the existing
literature in Chapter 3.

1.6 Publications

This dissertation is arranged as a compilation thesis. It includes the following
publications:

• Publication A: Survey on Combinatorial Register Allocation and Instruc-
tion Scheduling. R. Castañeda Lozano and C. Schulte. Technical report, to
be submitted to ACM Computing Surveys. Archived at arXiv:1409.7628
[cs.PL], 2014.

• Publication B: Constraint-based Register Allocation and Instruction Schedul-
ing. R. Castañeda Lozano, M. Carlsson, F. Drejhammar, and C. Schulte. In
CP, volume 7514 of LNCS, pages 750–766. Springer, 2012.

• Publication C: Combinatorial Spill Code Optimization and Ultimate Coa-
lescing. R. Castañeda Lozano, M. Carlsson, G. Hjort Blindell, and C. Schulte.
In LCTES, pages 23–32. ACM, 2014.

Table 1.1 shows the relation between the three publications and the contribu-
tions listed in Section 1.5.

publication C1 C2 C3 C4 C5
A (Section 3.1) ✓ - - - -
B (Section 3.2) - ✓ ✓ ✓ ✓

C (Section 3.3) - ✓ ✓ - ✓

Table 1.1: Contributions by publication.

The author has also participated in the following publications outside of the
scope of the dissertation:

11



• Testing Continuous Double Auctions with a Constraint-based Oracle. R. Cas-
tañeda Lozano, C. Schulte, and L. Wahlberg. In CP, volume 6308 of LNCS,
pages 613–627. Springer, 2010.

• Constraint-based Code Generation. R. Castañeda Lozano, G. Hjort Blindell,
M. Carlsson, F. Drejhammar, and C. Schulte. Extended abstract published
in SCOPES, pages 93–95. ACM, 2013.

• Unison: Assembly Code Generation Using Constraint Programming. R. Cas-
tañeda Lozano, G. Hjort Blindell, M. Carlsson, and C. Schulte. System
demonstration at DATE 2014.

• Optimal General Offset Assignment. S. Mallach and R. Castañeda Lozano.
In SCOPES, pages 50–59. ACM, 2014.

The second and third publications are excluded from the dissertation since they
are subsumed by Publications B and C. The first and last publications are excluded
since they are only partially related to the dissertation (the first publication applies
constraint programming to a different problem while the last publication approaches
a code generation problem with a different combinatorial optimization technique).

1.7 Outline

This dissertation is arranged as a compilation thesis consisting of two parts. Part I
(including this chapter) presents an overview of the dissertation. Part II contains
the reprints of Publications A, B and C.

The rest of Part I is organized as follows. Chapter 2 provides additional back-
ground on modeling and solving combinatorial problems with constraint program-
ming. Chapter 3 summarizes each publication and clarifies the individual contri-
butions of the dissertation author. Chapter 4 concludes Part I and proposes future
work.
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Chapter 2

Constraint Programming

This chapter provides the background in constraint programming that is required
to follow the rest of the dissertation, particularly Publications B and C. A more
comprehensive overview of constraint programming can be found in the handbook
edited by Rossi et al. [85].

Section 2.1 gives a brief overview. Section 2.2 describes how combinatorial
problems are modeled with constraint programming. Section 2.3 covers the basic
ideas behind constraint solving as well as the solving mechanisms applied in the
dissertation. The concepts are illustrated with a simple running example.

2.1 Overview

Constraint programming (CP) is a combinatorial optimization technique that is
particularly effective at solving hard combinatorial problems. CP captures problems
as models with variables, constraints over the variables, and possibly an objective
function describing the quality of different solutions. From the modeling point
of view, CP offers a higher level of abstraction than alternative techniques such
as integer programming (IP) [71] and Boolean Satisfiability (SAT) [37] since CP
models are not limited to particular variable domains or types of constraints. From
a solving point of view, CP is particularly suited to tackle practical challenges
such as scheduling, resource allocation, and rectangle packing problems since it can
exploit substructures that are commonly found in these problems [97].

2.2 Modeling

The first step in solving a combinatorial problem with CP is to characterize
its solutions in a formal model [91]. CP provides two basic modeling elements:

13



Variables:
x ∈ {1,2}
y ∈ {1,2}
z ∈ {1,2,3,4,5}

Constraints:
x ≠ y;x ≠ z; y ≠ z
x + y = z

Figure 2.1: Running example: basic constraint model.

variables and constraints over the variables. The variables represent problem de-
cisions while the constraints represent forbidden combinations of decisions. The
variable assignments that satisfy the model constraints make up the solutions to
the modeled combinatorial problem.

Modeling elements. In CP, variables can take values from different types of
finite domains. The most common variable domains are integers and Booleans.
Other variable domains frequently used in CP are floating point values and sets of
integers. More complex domains include multisets, strings, and graphs [36].

The most general way to define constraints is by providing a set of feasible com-
binations of values over some variables. Unfortunately, these constraints become
easily impractical as all valid combinations must be enumerated explicitly. Thus,
constraint models typically provide different types of constraints with implicit se-
mantics such as equality and inequality among integer variables and conjunction
and disjunction among Boolean variables.

Figure 2.1 shows a simple constraint model that is used as a running example
thorough the rest of the chapter. The model includes three variables x, y, and z with
finite integer domains and two types of constraints: three disequality constraints to
ensure that each variable takes a different value, and a simple arithmetic constraint
to ensure that z is the sum of x and y.

Global constraints. Constraints are often classified according to the number of
involved variables. Constraints involving three or more variables are often referred
to as global constraints [97]. Global constraints are one of the key strengths of CP
since they allow models to be more concise and structured and improve solving as
explained in Section 2.3.

Global constraints typically capture common substructures occurring in differ-
ent types of problems. Some examples are: linear equality and inequality, pair-
wise disequality, value counting, ordering, array access, bin-packing, geometrical
packing, and scheduling constraints. Constraint models typically combine multiple
global constraints to capture different substructures of the modeled problems. An
exhaustive description of available global constraints can be found in the Global
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Variables:
. . .

Constraints:
alldifferent({x, y, z})
x + y = z

Figure 2.2: Constraint model with global alldifferent constraint.

Variables:
. . .

Constraints:
. . .

Objective:
maximize z

Figure 2.3: Constraint model with objective function.

Constraint Catalog [10]. The most relevant global constraints in this dissertation
are: alldifferent [82] to ensure that a set of variables take pairwise distinct values,
global cardinality [83] to ensure that a set of variables take a value a given number
of times, cumulative [1] to ensure that the capacity of a resource is not exceeded
by a set of tasks represented by start time variables, and rectangle packing [8] to
ensure that a set of rectangles represented by coordinate variables do not overlap.

Figure 2.2 shows the running example where the three disequality constraints
are replaced by a global alldifferent constraint. The use of alldifferent makes the
structure of the problem more explicit, the model more concise, and the solving
process more efficient as illustrated in Section 2.3.

Optimization. Many combinatorial problems include a notion of quality to be
maximized (or cost to be minimized). This can be expressed in a constraint model
by means of an objective function that characterizes the quality of different solu-
tions. Figure 2.3 shows the running example extended with an objective function
to maximize the value of z.

2.3 Solving

Constraint programming (CP) solves constraint models by two main mecha-
nisms: propagation [11] and search [94]. Propagation discards values for variables
that cannot be part of any solution. When no further propagation is possible, search
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event x y z

initially {1,2} {1,2} {1,2,3,4,5}
propagation for x + y = z {1,2} {1,2} {2,3,4}

Table 2.1: Propagation for the constraint model from Figure 2.1.

tries several alternatives on which propagation and search is repeated. Modern CP
solvers are able to solve simple constraint models automatically by just applying
this procedure. However, as the complexity of the models increase, the user often
needs to resort to advanced solving techniques such as model reformulations, de-
composition, and presolving to handle the combinatorial explosion that is inherent
to hard combinatorial problems.

Propagation. CP solvers keep track of the values that can be assigned to each
variable by maintaining a data structure called the constraint store. The model
constraints are implemented by propagators. Propagators can be seen as functions
on constraint stores that discard values according to the semantics of the constraints
that they implement. Propagation is typically arranged as a fixpoint mechanism
where individual propagators are invoked repeatedly until the constraint stores
cannot be reduced anymore. The architecture and implementation of propagation
is thoroughly discussed by Schulte and Carlsson [87].

The correspondence between constraints and propagators is a many-to-many
relationship: a constraint can be implemented by multiple propagators and vice
versa. Likewise, constraints can often be implemented by alternative propagators
with different propagation strengths. Intuitively, the strength of a propagator corre-
sponds to how many values it is able to discard from the constraint stores. Stronger
propagators are able to discard more values but are typically based on algorithms
that have a higher time or space complexity. Thus, there is a trade-off between the
strength of a propagator and its cost, and often the user has to make a choice by
analysis or experimentation.

Table 2.1 shows how constraint propagation works for the constraint model
from Figure 2.1, assuming that the constraints are mapped to propagators in a
one-to-one relationship. The constraint stores of the three variables are initialized
with the domains in the model. The only propagator that can propagate is that
implementing the constraint x+y = z. Since the sum of x and y cannot be less than
2 nor more than 4, the values 1 and 5 are discarded from the store of z.

One of the strengths of constraint programming is the availability of dedicated
propagation algorithms that provide strong and efficient propagation for global con-
straints. This is the case for all global constraints discussed in this dissertation.
The alldifferent constraint can be implemented by multiple propagation algorithms
of different strengths and costs [96]. The most prominent one provides the strongest
possible propagation (where all values left after propagation are part of a solution
for the constraint) in sub-cubic time by applying matching theory [82]. The global
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event x y z

initially {1,2} {1,2} {1,2,3,4,5}
propagation for x + y = z {1,2} {1,2} {2,3,4}
propagation for alldifferent {1,2} {1,2} {3,4}

Table 2.2: Propagation for the constraint model from Figure 2.2.

cardinality constraint can be seen as a generalization of alldifferent. Likewise, the
strongest possible propagation can be achieved in cubic time by applying flow the-
ory [83]. Alternative propagation algorithms exist that are less expensive but deliver
weaker propagation [78]. The cumulative constraint cannot be propagated in full
strength in polynomial time [32], but multiple, often complementary propagation
algorithms are available that achieve good propagation in practice [6]. Similarly to
the cumulative constraint, the rectangle packing constraint cannot be fully propa-
gated in polynomial time [60], and multiple propagation algorithms exist, including
constructive disjunction [47] and sweep techniques [8].

Table 2.2 shows how using an alldifferent global constraint in the model from
Figure 2.2 yields stronger propagation than using simple disequality constraints.
First, the arithmetic propagator discards the values 1 and 5 from the constraint
store of z as in the previous example from Table 2.1. Then, the propagator imple-
menting alldifferent is able to additionally discard the value 2 for z by recognizing
that this value must necessarily be assigned to either x or y.

Search. Applying only propagation is usually not sufficient to solve hard combi-
natorial problems. When propagation has reached a fixpoint and some constraint
stores still contain several possible values (as in the examples from Tables 2.1 and
Tables 2.2), CP solvers apply search to decompose the problem into simpler sub-
problems. Propagation and search are applied to each subproblem in a recursive
fashion, inducing a search tree whose leaves correspond to either solutions (if all con-
straint stores contain a single value) or failures (if some constraint store is empty).
The way in which problems are decomposed (branching) and the order in which
subproblems are visited (exploration) form a search strategy. The choice of a search
strategy has often a critical impact on the solving efficiency. A key strength of CP
is that search strategies are programmable by the user, which permits exploiting
problem-specific knowledge to improve solving. The main concepts of search are
explained in depth by Van Beek [94].

Branching is typically (although not necessarily) arranged as a variable-value
decision, where a particular variable is selected and the values in its constraint store
are decomposed, yielding multiple subproblems. For example, a branching scheme
following the fail-first principle (“to succeed, try first where you are most likely to
fail” [43]) may select first the variable with the smallest domain, and then split its
constraint store into two equally-sized components.
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x: {1,2}
y: {1,2}
z: {1 . . .5}

x: {1,2}
y: {1,2}
z: {3,4}

x: {2}
y: {1,2}
z: {3,4}

x: {2}
y: {1}
z: {3}

(5) propagation

x: {1}
y: {1,2}
z: {3,4}

x: {1}
y: {2}
z: {3}

(3) propagation

(2) branching: x = 1 (4) branching: x = 2

(1) propagation

Figure 2.4: Depth-first search for the constraint model from Figure 2.2. Circles and
diamonds represent intermediate and solution nodes.

Exploration for a constraint model without objective function (where the goal
is typically to find one or all existing solutions) is often arranged as a depth-first
search [19]. In a depth-first search exploration, the first subproblem resulting from
branching is solved before attacking the alternative subproblems. Figure 2.4 shows
the search tree corresponding to a depth-first exploration of the constraint model
from Figure 2.2. First, the model constraints are propagated as in Table 2.2 (1).
Since the constraint stores still contain several values after propagation, branching
is executed (2) by propagating first the alternative x = 1 (this branching scheme
is arbitrary). After branching, propagation is executed again (3) which gives the
first solution (x = 1; y = 2; z = 3). Then, the search backtracks up to the branching
node and the second alternative x = 2 is propagated (4). After this, propagation is
executed again (5) which gives the second and last solution (x = 2; y = 1; z = 3).

Exploration for a constraint model with objective function (where the goal is
usually to find the best solution) is often arranged in a branch-and-bound [71]
fashion. A branch-and-bound exploration proceeds as depth-first search with the
addition that the variable corresponding to the objective function is progressively
constrained to be better than every found solution. When the solver proves that
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x: {1,2}
y: {1,2}
z: {1 . . .5}

x: {1,2}
y: {1,2}
z: {3,4}

x: {1,2}
y: {1,2}
z: {4}

x: {2}
y: {}
z: {4}

(5) propagation

x: {1}
y: {1,2}
z: {3,4}

x: {1}
y: {2}
z: {3}

(3) propagation

(2) branching: x = 1 (4) bounding: z > 3

(1) propagation

Figure 2.5: Branch-and-bound search for the constraint model from Figure 2.3.
Circles, diamonds, and squares represent intermediate, solution, and failure nodes.

there are no solutions left the last found solution is optimal by construction. Fig-
ure 2.5 shows the search tree corresponding to a branch-and-bound exploration of
the constraint model from Figure 2.3. Search and propagation proceed exactly as
in the depth-first search example from Figure 2.4 until the first solution is found
(1-3). Then, the search backtracks up to the branching node and (4) the objective
function is constrained, for the rest of the search, to be better than in the first
solution (that is, z > 3). After bounding, propagation is executed again (5). Since
z must be equal to 4, the propagator implementing the constraint x+y = z discards
the value 1 from the stores of x and y. Then, the alldifferent propagator discards
the value 2 from the store of y since this value is already assigned to x. This makes
the store of y empty which yields a failure. Since all the search space is exhausted,
the last and only solution found (x = 1; y = 2; z = 3) is optimal.

Model reformulations to strengthen propagation. Combinatorial problems
can be typically captured by multiple constraint models. In CP, it is common
that a first, naive constraint model cannot be solved in a satisfactory amount of
time. Then, the model must be iteratively reformulated to improve solving while
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conserving the semantics of the original problem [91]. For example, replacing several
basic constraints by global constraints as done in Figures 2.1 and 2.2 strengthens
propagation which can speed up solving exponentially.

Two common types of reformulations are the addition of implied and symme-
try breaking constraints. Implied constraints are constraints that yield additional
propagation without altering the set of solutions of a constraint model [91]. For
example, by reasoning about the x + y = z and alldifferent constraints together, it
can be seen that the only values for x and y that are consistent with the assignment
z = 4 are 1 and 3. Thus, the implied constraint (x ≠ 3) ∧ (y ≠ 3) Ô⇒ z ≠ 4 could
be added to the model1. Propagating such a constraint would avoid, for example,
steps 4 and 5 in the branch-and-bound search illustrated in Figure 2.5.

Many constraint models have symmetric solutions, that is, solutions which can
be formed by for example permuting variables or values in other solutions. Groups
of symmetric solutions form symmetry classes. Symmetry breaking constraints are
constraints that remove symmetric solutions while preserving at least one solution
per symmetry class [52]. Adding these constraints to a model can substantially
reduce the search effort. For example, in the running example the variables x and y
can be considered symmetric since permuting their values in a solution always yields
an equally valid solution with the same objective function. Adding the symmetry
breaking constraint x < y makes search unnecessary, since step 1 in Figures 2.4
and 2.5 already leads to the solution x = 1; y = 2; z = 3 which is symmetric to the
alternative solution to the original model (x = 2; y = 1; z = 3).

Decomposition. Many practical combinatorial problems consist of several sub-
problems which yield different classes of variables and global constraints. Often,
different subproblems are best solved by different combinatorial optimization tech-
niques. In such cases, it is advantageous to decompose problems into multiple
subproblems that can be solved in isolation by the best available techniques and
then recombined into full solutions. A popular scheme is to decompose a problem
into a master problem whose solution yields one or multiple subproblems. This
decomposition is often applied, for example, to resource allocation and scheduling
problems, where resource allocation is defined as the master problem and solved
with integer programming, and scheduling is defined as the subproblem and solved
with CP [67]. Even if the same technique is applied to all subproblems result-
ing from a decomposition, solving can often be improved if the subproblems are
independent and can for example be solved in parallel [30].

Presolving. Presolving techniques reformulate combinatorial models to improve
the robustness and speed of the subsequent solving process. Two popular pre-
solving techniques in CP are bounding by relaxation [48] and shaving (also known
as singleton consistency in constraint programming [22]). Bounding by relaxation

1Global constraints and dedicated propagation algorithms have been proposed that reason on
alldifferent and arithmetic constraints in a similar way [9].
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event x y z

initially {1,2} {1,2} {1,2,3,4,5}
shaving for z = 1 {1,2} {1,2} {2,3,4,5}
shaving for z = 2 {1,2} {1,2} {3,4,5}
shaving for z = 3 {1,2} {1,2} {3,4,5}
shaving for z = 4 {1,2} {1,2} {3,5}
shaving for z = 5 {1,2} {1,2} {3}

Table 2.3: Effect of shaving the variable z before solving.

strengthens the constraint model as follows: a relaxed version of the model (where
for example some constraints are removed) is first solved to optimality. Then, the
objective function of the original model is constrained to be worse or equal than
the optimal result of the relaxation. For example, the constraint model from Fig-
ure 2.3 can be solved to optimality straightforwardly if the alldifferent constraint
is disregarded. This relaxation yields the optimal value of z = 4. After solving the
relaxation, the value 5 can be discarded from the domain of z in the original model
since z cannot be better than 4.

Shaving tries individual assignments of values to variables and discards the
values which lead to a failure after propagation. This technique is often applied only
in the presolving phase because of its high (yet typically polynomial) computational
cost. Table 2.3 illustrates the effect of applying shaving to the variable z in the
running example. Since all assignments of values different to 3 lead to a direct
failure after propagation, they can be discarded from the domain of z.
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Chapter 3

Summary of Publications

This chapter gives an extended summary of each of the three publications that
underlie the dissertation and relates them to the contributions listed in Section 1.5.
Section 3.1 summarizes Publication A, a technical report that surveys combina-
torial approaches to register allocation and instruction scheduling. Sections 3.2
and 3.3 summarize Publications B and C, two peer-reviewed papers published in
international conferences that contribute novel program representations, combina-
torial models, and solving techniques for integrated register allocation and instruc-
tion scheduling as well as empirical knowledge gained through experimentation.
Section 3.4 clarifies the individual contributions of the dissertation author.

3.1 Publication A: Survey on Combinatorial Register
Allocation and Instruction Scheduling

Publication A surveys existing literature on formal combinatorial optimization ap-
proaches to register allocation and instruction scheduling (see contribution C1 in
Section 1.5). The survey contributes a detailed taxonomy of the existing literature,
illustrates the developments and trends in the area, and exposes problems that
remain unsolved. To the best of our knowledge, it is the first survey devoted to
combinatorial approaches to register allocation and instruction scheduling. Avail-
able surveys of register allocation [54, 74, 76, 79], instruction scheduling [2, 81, 84],
and integrated code generation [56] ignore or present only a brief description of
combinatorial approaches.

Combinatorial register allocation. The most prominent combinatorial ap-
proach to register allocation is introduced by Goodwin and Wilken [39], extended by
Kong and Wilken [59], and sped up by Fu and Wilken [31]. This approach, simply
called Optimal Register Allocation (ORA), is based on IP and models the full array
of register allocation subtasks for entire functions. Fu and Wilken demonstrate
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that ORA can solve 98.5% of the functions in the SPEC92 integer benchmarks
optimally.

An alternative approach is to model and solve register allocation as a Partitioned
Boolean Quadratic Programming (PBQP) problem, as introduced by Scholz and
Eckstein [86] and consolidated by Hames and Scholz [42]. PBQP is a combinatorial
optimization technique where the constraints are expressed in terms of costs of
individual and pairs of assignments to finite integer variables. Register allocation
can be formulated as a PBQP problem in a simple and natural manner, but the
formulation excludes live range splitting. The PBQP approach can solve 97.4%
of the functions in SPEC2000 to optimality with a dedicated branch-and-bound
solver.

A third prominent approach is the Progressive Register Allocation (PRA) scheme
proposed by Koes and Goldstein [57, 58]. The PRA approach focuses on deliver-
ing acceptable solutions quickly while being able to improve them if more time is
available. Register allocation (excluding coalescing and register packing) is mod-
eled as a network flow IP problem. Koes and Goldstein propose a custom iterative
solver that delivers solutions in a time frame that is competitive with traditional
approaches and generates optimal solutions for 83.5% of the functions from different
benchmarks when additional time is given.

Other combinatorial approaches to register allocation include using dynamic
programming, where locally optimal solutions are extended to globally optimal
ones [61]; and decomposing the wide array of register allocation subtasks and solving
each of the resulting problems separately [4, 23,41].

Combinatorial instruction scheduling. Instruction scheduling can be clas-
sified into tree levels according to its scope: local (single basic blocks), regional
(collections of basic blocks), and global (entire functions). Regional and global
approaches allow to move instructions across basic blocks.

The early approaches to local instruction scheduling (using both IP [5,34,49,65]
and CP [26]) focus on handling highly irregular processors and do not scale beyond
some tens of instructions. In 2000, the seminal IP approach by Wilken et al. [98]
demonstrates that basic blocks of hundreds of instructions can be scheduled to
optimality. The key is to exploit the structure of the dependency graph (which
represents dependencies among pairs of instructions) and to use problem-specific
knowledge for improving the underlying solving techniques. The research triggered
by this approach [44, 95] culminates with the CP approach by Malik et al. [69],
which solves optimally basic blocks of up to 2600 instructions for a more realistic
and complex processor than the one used originally by Wilken et al.

Regional instruction scheduling operates on multiple basic blocks to exploit
more instruction-level parallelism and yield faster code. Its scope can be classified
into three levels: superblocks [50] (consecutive basic blocks with a single entry and
possibly multiple exits), traces [27] (consecutive basic blocks with possibly multiple
entries and exits, and software pipelining [80] (where instructions from multiple
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iterations of a loop are scheduled simultaneously in a new loop). Combinatorial
superblock scheduling is pioneered by Shobaki and Wilken [89] and improved by
Malik et al. [68] with a CP approach that extends their local CP scheduler to
superblocks without loss of scalability. The only reported combinatorial approach
to trace scheduling is due to Shobaki et al. [90] and based on ad-hoc search methods.
The approach is able to solve traces of up to 424 instructions optimally. The
most prominent combinatorial approach to software pipelining, based on IP, is due
to Govindarajan et al. [40] and extended by Altman et al. [3] to more complex
processors. Altman et al.’s experiments show that 75% of the loops in multiple
benchmarks can be solved optimally in less than 18 minutes.

Global instruction scheduling considers entire functions simultaneously. The
only reported combinatorial approach to global scheduling is based on IP and due
to Winkel [101,102]. The model captures 15 types of instruction movements across
basic blocks and is analytically shown to yield IP problems that can be solved
efficiently. Experiments show that the approach is indeed feasible for medium-size
functions of hundreds of instructions.

Integrated approaches. Integrated, combinatorial approaches to register allo-
cation and instruction scheduling can be roughly classified into two categories: those
which “only” consider these two tasks and those which take one step further and
include instruction selection. The latter are referred to as fully integrated.

One of the first combinatorial approaches that integrates register assignment
and instruction scheduling is Kästner’s IP-based PROPAN [55]. A distinguish-
ing feature of PROPAN is the use of an order-based model for scheduling [103] in
which resource usages are modeled as flows through a network formed by instruc-
tions. PROPAN’s IP model also features instruction bundling and register bank
assignment for superblocks. PROPAN is able to solve superblocks of up to 42 in-
structions optimally, yielding code that is almost 20% faster than the traditional
approach.

A more recent, CP-based approach is Unison, the project that underlies this
dissertation. The aim of Unison is to model a wide array of register allocation and
instruction scheduling subtasks in integration, including register assignment and
packing, ultimate coalescing, spill code optimization, register bank assignment,
instruction scheduling, and instruction bundling. The scope of Unison’s register
allocation is global while instructions are scheduled locally. As the PRA approach,
Unison proposes a progressive solving scheme that allows trading compilation time
for code quality. Experiments with the MediaBench benchmarks demonstrate that
Unison generates better code than traditional approaches, solves optimally func-
tions of up to 605 instructions, and delivers high-quality code for functions of up
to 1000 instructions.

Other combinatorial approaches to integrated register allocation and instruction
scheduling include the early IP approach by Chang et al. [17], and an extension of
Govindarajan et al.’s software pipelining approach that handles register assignment,
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spilling, and spill code optimization [70].
Fully integrated combinatorial code generation is pioneered by Wilson et al. [99,

100]. Remarkably, their IP model captures more register allocation subtasks than
many approaches without instruction selection. The scope is similar to that of
Unison. Unfortunately, experimental results are not publicly available and the
publications indicate that the approach has a rather limited scalability.

An alternative IP approach is proposed by Gebotys [33]. The focus of Gebotys’
approach is on instruction selection: register assignment is decided by selecting
different instruction versions, and instruction scheduling is reduced to bundling
already ordered instructions. Gebotys’ experimental results show that the approach
generates significantly better code than a traditional code generator for basic blocks
of around 100 instructions.

Bashford and Leupers propose ICG, the first and only CP-based approach to
fully integrated code generation [7]. Unlike the rest of approaches described here,
ICG decomposes solving into several stages, sacrificing global optimality in favor of
solving speed. Experiments on four basic blocks of the DSPstone benchmark suite
show that the generated code is as good as hand-optimized code, and noticeably
better than traditional code generators. However, the results suggest that the
scalability of ICG is limited despite its decomposed solving process.

The most recent fully-integrated approach is called OPTIMIST [24]. OPTI-
MIST is based on IP and has a rich scheduling model that allows to target pro-
cessors with arbitrarily complex pipeline resources. The model captures several
register allocation subtasks but leaves out register assignment, which in its turn
precludes coalescing and register packing. OPTIMIST explores two scopes: local
code generation [25] and software pipelining [24]. The local code generator solves
basic blocks of up to 191 instructions to optimality, while the software pipelining
approach handles loops of around 100 instructions.

3.2 Publication B: Constraint-based Register Allocation
and Instruction Scheduling

Publication B proposes the first advancements in combinatorial code generation
contributed by this dissertation: the Linear Static Single Assignment (LSSA) and
copy extension program representations (part of contribution C3), and a first inte-
grated combinatorial model for global register allocation and instruction scheduling
(part of contribution C2). The combination of these elements enables a combinato-
rial approach that for the first time handles multiple subtasks of register allocation
and instruction scheduling such as spilling, (basic) coalescing, packing, register
bank assignment, and instruction scheduling and bundling for VLIW processors.
The publication also proposes a constraint-based code generator that exploits the
properties of LSSA to scale up to medium-size functions (contribution C4). Ex-
periments demonstrate that the code quality of the constraint-based approach is
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int factorial(int n) {
int f = 1;
while (n > 0) {

f = f * n; n--;
}
return f;

}

Figure 3.1: Running example: factorial function in C code.

competitive with that of state-of-the-art traditional code generators for a simple
processor (part of contribution C5).

Running example. The iterative implementation of the factorial function, whose
C code is show in Figure 3.1, is used as a running example to illustrate the concepts
proposed in Publications B and C.

Input program representation. The publication takes functions after instruc-
tion selection, represented by their control-flow graph (CFG) in Static Single As-
signment (SSA) form [20, 92], as input. This is a common program representation
used, for example, by the LLVM compiler infrastructure [63].

The vertices of the CFG correspond to basic blocks and the arcs correspond to
control transfers across basic blocks. A basic block contains operations (referred
to as instructions in Publication B) that are executed together independently of
the execution path followed by the program. Operations use and define possibly
multiple temporaries, and are implemented by processor instructions (referred to
as operations in Publication B).

SSA is a program form where temporaries are only defined once, and φ-functions
are inserted to disambiguate definitions of temporaries that depend on program
control flow [20]. Figure 3.2 shows the CFG of the running example in SSA after
selecting the following instructions of a MIPS-like processor: li (load immediate
value), ble (jump if lower or equal), mul (multiply), sub (subtract), bgt (jump if
greater), and jr (jump to return from the function). The top and bottom operations
in basic blocks b1 and b3 are special delimiter operations that define and use the
input argument (t1) and return value (t7) to the function. The figure illustrates the
purpose of φ-functions. For example, the φ-function in b3 defines a temporary t7
which holds the value of either t2 or t5, depending on the program control flow.

A program point is located between two consecutive statements. A temporary
is live at a program point if it holds a value that might be used in the future. The
live range of a temporary t is the set of program points where t is live.

Linear Static Single Assignment form. The publication proposes Linear Static
Single Assignment (LSSA) form as a program representation to model register allo-
cation for entire functions. LSSA decomposes temporaries that are live in different
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t1 ←
t2← li 1

ble t1, 0, b3 t3← φ (t1, t6)
t4← φ (t2, t5)
t5← mul t4, t3
t6← sub t3, 1

bgt t6, 0, b2
t7← φ (t2, t5)

jr
← t7

b1
b2

b3

Figure 3.2: Factorial function in SSA with processor instructions.

⋮

t1←
⋮

⋮ ⋮

⋮

← t1
⋮
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t1 ≡ t2 t1 ≡ t3

t2 ≡ t4 t3 ≡ t4

⋮

t1←
⋮
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⋮

← t4
⋮

(b) after

Figure 3.3: LSSA transformation.

basic blocks into multiple temporaries, one for each basic block. The temporaries
decomposed from the same original temporary are related by a congruence. Fig-
ure 3.3 illustrates the transformation of a simple program to LSSA. In Figure 3.3a,
t1 is a global temporary live in the four basic blocks. Its live range is represented by
rectangles to the left of each basic block. In Figure 3.3b, t1 is decomposed into the
congruent temporaries {t1, t2, t3, t4}, one per basic block. Congruent temporaries
t, t′ are represented as t ≡ t′.

LSSA has the property that each temporary belongs to a single basic block.
This property is exploited to reduce the task of modeling global register allocation
to modeling multiple local register allocation tasks related by congruences. The
structure of LSSA is also exploited in a problem decomposition that yields a more
scalable code generator.

LSSA is constructed from the SSA form by the direct application of a standard
liveness analysis. Delimiter operations are added at the beginning (end) of each
basic block to define (use) the temporaries that are live on entry (exit). Figure 3.4
shows the CFG of the running example in LSSA, where the arcs are labeled with
congruences. In this particular case, SSA temporaries correspond directly to LSSA
temporaries since they belong each to a single basic block.
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t1 ←
t2← li 1

ble t1, 0, b3
← t1, t2

t3, t4 ←
t5← mul t4, t3
t6← sub t3, 1

bgt t6, 0, b2
← t5, t6t7 ←

jr
← t7

b1
b2

b3

t1≡ t3
t2≡ t4

t2≡ t7

t5≡ t4
t6≡ t3

t7≡ t5

Figure 3.4: Factorial function in LSSA.

t1 ←
t2← li 1
t3← {�,move,store} t1
t4← {�,move,store} t2

ble t1, 0, b3
← t3, t4

t5, t6 ←
t7← {�,move,load} t5
t8← {�,move,load} t6
t9← mul t8, t7
t10← {�,move,load} t5
t11← sub t10, 1
t12← {�,move,store} t9
t13← {�,move,store} t11

bgt t11, 0, b2
← t12, t13

t14 ←
t15← {�,move,load} t14

jr
← t15

b1

b2

b3

t3≡ t5
t4≡ t6

t4≡ t14

t12≡ t6
t13≡ t5

t14≡ t12

Figure 3.5: Factorial function extended with copies.

Copy extension. The publication proposes copy extension as a program repre-
sentation to model spilling, coalescing, and register bank assignment in a unified
manner. Copy extension extends programs with copy operations (copies for short).
A copy can be implemented by different instructions (such as stores, loads, and
register-to-register moves) to allow its temporaries to be assigned to different types
of locations (such as processor registers or memory), or decided to be inactive.

The particular copy extension strategy depends on the architecture of the pro-
cessor. Programs for simple load-store processors with a single register bank such
as the MIPS-like processor in the running example are extended by inserting a copy
after each definition of a temporary (implementable by a store or a register-to-
register move instruction) and a copy before each use of a temporary (implementable
by a load or a register-to-register move instruction). Figure 3.5 shows the running
example in LSSA extended with copies. A copy from t to t′ that can be imple-
mented by different instructions i1, i2, . . . in is represented as t′ ← {�, i1, i2, . . . in} t,
where � is a special instruction whose selection indicates that the copy is inactive.

Combinatorial model. The publication proposes a combinatorial model of in-
tegrated register allocation and instruction scheduling based on LSSA programs
extended with copies. The model is parameterized with respect to the program

29



R1 R2 R3 R4 ...

0
1
2
3

cy
cle

t1

t2

t3 t4

Figure 3.6: Register packing.

and a processor description.
Register allocation variables determine which instruction implements each op-

eration (where the selection of a special instruction � indicates that an operation
is inactive), and which register is assigned to each temporary. The paper proposes
the concept of a unified register array, which includes processor registers as well
as registers representing memory locations. Using a unified register array enables
a uniform, compact model where the action of spilling a temporary t is implied
by assigning t to a memory register. The model includes additional variables to
model the start and end of the live range of each temporary. Register assignment
is reduced to a rectangle packing problem, following the model of Pereira and Pals-
berg [73]. Each temporary t yields a rectangle where the width is proportional
to the number of bits of t and the top and bottom coordinates correspond to the
beginning and end of the live range of t. A valid register assignment corresponds
to a non-overlapping packing of temporary rectangles in a rectangular area, where
the horizontal dimension represents the registers in the unified register array and
the vertical dimension represents time in clock cycles. This structure is captured
with non-overlapping rectangle constraints [8]. Figure 3.6 shows an example where
four temporaries with different live ranges are packed into registers R1 to R4.

The model also includes constraints to ensure that: the register to which tem-
porary t is assigned is compatible with the instructions that define and use t, the
temporaries defined and used by inactive copies are assigned to the same register
(capturing basic coalescing), and congruent temporaries in different basic blocks
are assigned the same register.

Instruction scheduling variables determine the cycle in which each operation is
issued. The model includes dependency constraints to enforce the partial ordering
among instructions imposed by data and control flow, and resource constraints [1]
to ensure that the capacity of processor resources such as functional units is not
exceeded. This standard scheduling structure captures VLIW instruction bundling
since it allows multiple instructions to be issued in the same cycle.

Publication B’s objective is to minimize execution cycles. The objective function
is a sum of the makespan (last issue cycle) of each basic block b weighted by the
estimated execution frequency of b.

Model limitations. The combinatorial model from Publication B has two sig-
nificant limitations despite capturing a wide array of subtasks. The first limitation

30



is usually referred to as spill-everywhere: a temporary t spilled to memory must be
loaded into a register as many times as it is used, even in the extreme case where
the user operations are bundled together. The second limitation is that of basic
coalescing: temporaries that hold the same value and are live simultaneously can-
not be coalesced. Program representations and combinatorial models to overcome
these two limitations are the main subject of Publication C.

Decomposition-based code generation. The publication proposes a CP-based
code generator that exploits the properties of LSSA to decompose the problem and
achieve greater scalability. The decomposition scheme proceeds as follows: first, a
global problem is solved by assigning registers to the temporaries that are related
across basic blocks by congruences. Then, the remaining problem can be decom-
posed into a local problem per basic block, since the rest of variables and constraints
correspond to local decisions. The local problems are solved independently for each
basic block b by assigning values to the remaining variables such that the makespan
of b is minimized. The global and local solutions are combined into a full solution
that represents an assembly function. The process is repeated by constraining the
cost to be less than that of the newly found assembly function, until the code
generator proves optimality or times out.

Experimental results. The quality of the generated code and the solving time
are evaluated experimentally with MIPS32 [93] as a simple, general-purpose proces-
sor and functions from the C program bzip2 as a representative of the SPECint 2006
benchmark suite. The functions are taken after aggressive optimization and in-
struction selection using LLVM 3.0. The results show that the code quality is
competitive with that of the code generated by LLVM and that, due to the decom-
position scheme and the use of timeouts, the solving time grows polynomially with
the number of operations.

3.3 Publication C: Combinatorial Spill Code Optimization
and Ultimate Coalescing

Publication C proposes a novel program representation called alternative tempo-
raries (part of contribution C3) that addresses the limitations of the combinatorial
model contributed by Publication B. Alternative temporaries enable the incorpo-
ration of spill code optimization and ultimate coalescing to a combinatorial model
of integrated register allocation and instruction scheduling in a unified manner.
For the first time, a combinatorial model is proposed that captures the majority of
subtasks of global register allocation and instruction scheduling (part of contribu-
tion C2). Furthermore, the publication extends the constraint-based code generator
proposed in Publication B with a presolving phase that is empirically demonstrated
to be essential for robustness. Experiments (part of contribution C5) show that the
new approach: yields faster code than Publication B’s approach and state-of-the-art
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t1 ←
t2 ← store t1
⋯

t3 ← load t2
← t3

t4 ← load t2
← t4

(a) spill-everywhere

t1 ←
⋯

t2 ← move t1
⋯

← t1
⋯

← t2

(b) basic coalescing

Figure 3.7: Limitations of program representation in Publication B.

traditional code generators for a VLIW processor, preserves the scalability demon-
strated in Publication B despite the increased solution space and complexity of the
targeted processor, and adapts easily to different optimization criteria.

Input program representation. The publication starts with functions in LSSA
form extended with copies as proposed by Publication B. This input representation
imposes two limitations to the corresponding combinatorial model: spill-everywhere
and basic coalescing. In a spill-everywhere model, a load instruction is inserted as
many times as a spilled temporary is used, even in the extreme case where the
user operations are bundled together. This is illustrated in Figure 3.7a, where two
instructions are inserted to load the temporary t2 which is the result of spilling t1.
Basic coalescing cannot coalesce temporaries that hold the same value if their live
ranges overlap. This is illustrated in Figure 3.7b, where both temporaries t1 and t2
are live after the definition of t2 and thus cannot be coalesced applying basic coa-
lescing, even though they hold the same value. A key observation in Publication C
is that both limitations stem from the impossibility of substituting temporaries in
the program as optimization decisions are taken, as traditional approaches do. For
example, in Figure 3.7a, substituting t4 with t3 in the last instruction would per-
mit removing the second load instruction. Similarly, in Figure 3.7b, substituting t2
with t1 in the last instruction would permit removing the register-to-register move
instruction.

Alternative temporaries. The publication proposes alternative temporaries as
a program representation to replace spill-everywhere by spill code optimization and
basic by ultimate coalescing in combinatorial code generation. This is achieved by
letting operations connect to different, alternative temporaries as long as these
hold the same value, instead of fixing which operation uses which temporary before
solving. This enables the substitution of temporaries during solving and thus allows
the model to capture spill code optimization and ultimate coalescing. Figure 3.8
shows the alternative temporaries necessary to enable spill code optimization and
ultimate coalescing in the examples from Figure 3.7. If the last instruction in
Figure 3.8a is connected to t3, spill code optimization can be performed by making
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t1 ←
t2 ← store t1
⋯

t3 ← load t2
← t3

t4 ← load t2
← {t3, t4}

(a) spill code optimization

t1 ←
⋯

t2 ← move t1
⋯

← t1
⋯

← {t1, t2}

(b) ultimate coalescing

Figure 3.8: Alternative temporaries to overcome limitations in Figure 3.7.

p1 ∶t1 ←
t2 ← li 1

{�, t3}← {�,move,store}{�, t1}
{�, t4}← {�,move,store}{�, t2}

ble {t1, t3}, 0, b3
← p2 ∶{t1, t3}, p3 ∶{t2, t4}

p4 ∶t5, p5 ∶t6 ←
{�, t7}← {�,move,load}{�, t5}
{�, t8}← {�,move,load}{�, t6}

t9 ← mul {t6, t8},{t5, t7, t10}
{�, t10}← {�,move,load}{�, t5}

t11 ← sub {t5, t7, t10}, 1
{�, t12}← {�,move,store}{�, t9}
{�, t13}← {�,move,store}{�, t11}

bgt {t11, t13}, 0, b2
← p6 ∶{t9, t12}, p7 ∶{t11, t13}

p8 ∶t14 ←
{�, t15}← {�,move,load}{�, t14}

jr
← p9 ∶{t14, t15}

b1

b2

b3

p2≡p4
p3≡p5

p3≡p8

p6≡p5
p7≡p4

p8≡p6

Figure 3.9: Factorial function augmented with alternative temporaries.

the last load instruction inactive. If the last instruction in Figure 3.8b is connected
to t1, ultimate coalescing can be performed by making the move instruction inactive.

A program is augmented with alternative temporaries in two main steps. First,
each occurrence of a temporary t in the program is replaced with a set of alterna-
tive temporaries that hold the same value as t. Then, the program is simplified by
discarding alternatives that can potentially lead to invalid or redundant solutions.
Figure 3.9 shows the running factorial example augmented with alternative tem-
poraries. A set of alternative temporaries t1, t2, . . . tn that can be connected to an
operation is represented as {�, t1, t2, . . . tn}, where � indicates that the operation
is not connected to any temporary. The sets of alternative temporaries that can
be connected to the delimiter operations are named as p1, p2, . . . , p9 and related by
congruences as shown in the labels of the CFG arcs.

Combinatorial model. The combinatorial model proposed by Publication B
is augmented to exploit alternative temporaries for spill code optimization and
ultimate coalescing. The main change introduced in the model is the addition of a
new dimension of variables that determine which temporary is connected to each
operation.
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R1 R2 ...

t1 ←

t2 ← li 1 ∣∣ ble t1, 0, b3
← t1, t2

t1
t2 R1 R2 ...

t5, t6 ←

t9 ← mul t6, t5 ∣∣ t11 ← sub t5, 1
bgt t11, 0, b2
← t9, t11

t5 t6

t9t11
R1 R2 ...

t14 ←

t15 ← move t14 ∣∣ jr
← t15

t14

t15

t1≡ t5
t2≡ t6

t1≡ t14

t9≡ t6
t11≡ t5

t14≡ t9

Figure 3.10: Optimal solution for the factorial function.

Constraints are added to enforce that copies are active if their defined tem-
poraries are used and inactive otherwise, and that active copies are connected to
temporaries. Temporaries that are not used by any operation are considered dead.
These changes obviate the dedicated coalescing constraints in Publication B: in
the new model, two temporaries are coalesced by simply using one of them and
discarding the other.

The dependency constraints are revisited to account for the fact that the data
flow is variable as it depends on the connections made between operations and
temporaries.

The objective function is generalized to enable different optimization criteria.
The new objective function is a weighted sum of the local cost of each basic block.
The weight and cost function of each basic block can be adjusted to optimize for
different criteria such as speed, code size, or energy consumption.

Figure 3.10 depicts the optimal solution for the running example, both in terms
of speed and code size. The solution assumes a VLIW processor (where bundled
instructions i, i′ are represented as i ∣∣ i′) and a calling convention that assigns
the input argument (t1) and the return value (t15) to register R1. Under such con-
straints, a register-to-register move instruction is required to move the computed
factorial value stored in R2 to the return register R1. Reasoning about register
allocation and instruction scheduling in integration yields the optimal decision to
bundle the move instruction together with the jump instruction jr in basic block b3.
The final MIPS-like assembly code derived from the optimal solution to the com-
binatorial problem is shown in Figure 3.11.

Model limitations. The combinatorial model augmented with alternative tem-
poraries overcomes the limitations highlighted in Publication B. However, other
limitations remain which also apply to Publication B and most previous work: the
model does not handle variable, uncertain instruction latencies (due for example to
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b1: li R2, 1 || ble R1, 0, b3
b2: mul R2, R2, R1 || sub R1, R1, 1

bgt R1, 0, b2
b3: move R1, R2 || jr

Figure 3.11: Optimal VLIW MIPS-like code for the factorial function.

cache memories); the scope of scheduling is limited to basic blocks; and remateri-
alization is not captured.

Code generation. The publication introduces Unison, a constraint-based code
generator that extends the decomposition-based scheme of Publication B with pre-
solving techniques. The main idea of presolving is to reformulate combinatorial
problems to boost the robustness of the solving process. A particularly effective
presolving technique is that of connection nogoods. This technique derives invalid
combinations of connections (nogoods) that are exploited by the solver to guide
the search process effectively. The nogoods are derived by analyzing a connection
graph, which represents operations, temporaries, and registers and their potential
connections. Paths between nodes that cannot be assigned the same register yield
connection nogoods.

Experimental results. The publication includes a thorough experimental evalu-
ation of different characteristics of the approach: code quality, impact of alternative
temporaries and presolving techniques, scalability and runtime behavior, and im-
pact of different optimization criteria. The experiments use Hexagon V4 [77] as a
VLIW digital signal processor and medium-size functions sampled from the Media-
Bench benchmark suite. The functions are taken after aggressive optimization and
instruction selection using LLVM 3.3.

The results show that the combinatorial approach generates faster code than
LLVM as a representative of state-of-the-art heuristic approaches (up to 41%, with
a mean improvement of 7%), and possibly optimal code (for 29% of the functions).
The improvement is partially due to the introduction of alternative temporaries,
which speed up code by around 2% compared to the model from Publication B.

Presolving is empirically demonstrated to be essential for robustness: without
it, Unison cannot solve 11% of the functions and the improvement over LLVM
decreases considerably. The experiments show that the combinatorial model can
be easily adjusted to optimize for code size minimization, although the mean im-
provement over LLVM in this case is only of 1%. Last, a surprising result from a
combinatorial optimization perspective is that the scalability of the code generator
introduced in Publication B is preserved despite the increased solution space and
complexity of the targeted processor.
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3.4 Individual Contributions

The main part of the work in Publication A (including search, classification, syn-
thesis, review, and discussion of the literature, as well as the actual writing) has
been carried out by the dissertation author.

The main ideas behind Publications B and C have been conceived by the dis-
sertation author, and refined in discussions with Mats Carlsson, Frej Drejhammar,
Gabriel Hjort Blindell, and Christian Schulte. Most of the presolving techniques
(including connection nogoods as described in Publication C) have been conceived
by Mats Carlsson.

The implementation of the code generator and the design, implementation, and
analysis of the experiments are largely due to the dissertation author in collab-
oration with Mats Carlsson, Gabriel Hjort Blindell, and Christian Schulte. The
implementation of the presolver and the experimental study of the impact of alter-
native temporaries in Publication C have been carried out by Mats Carlsson.

The dissertation author is the main writer of the three publications. Christian
Schulte has written the introductory parts of Publication B and C, and edited sig-
nificant parts of the three publications. Gabriel Hjort Blindell has written parts of
Section 6 in Publication C. The figures have been mostly produced by the disser-
tation author in collaboration with Mats Carlsson and Gabriel Hjort Blindell.
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Chapter 4

Conclusion and Future Work

This chapter presents the main conclusions of the dissertation, identifies key appli-
cation areas, and proposes directions for future work in combinatorial code gener-
ation.

4.1 Conclusion

Traditional approaches to register allocation and instruction scheduling are based
on staging and heuristic algorithms. This setup yields suboptimal code and is hard
to adapt to new architectures and processor revisions. Combinatorial approaches
to these tasks are more flexible and have the potential to generate optimal code,
but to deliver on this promise they must match the wide array of subtasks handled
by their traditional counterparts and scale to realistic sizes robustly.

This dissertation demonstrates that the integration of register allocation and
instruction scheduling using constraint programming is practical and effective for
medium-size problems. The dissertation surveys existing combinatorial approaches
to register allocation and instruction scheduling, both in isolation and in integration
(see contribution C1 in Section 1.5). A novel integrated combinatorial model is
proposed (C2) that for the first time matches the majority of the subtasks of global
register allocation and instruction scheduling handled by traditional approaches,
including spilling, ultimate coalescing, packing, spill code optimization, register
bank assignment, and instruction scheduling and bundling for VLIW processors.

The model is designed in conjunction with three novel representations (C3) that
enable capturing different aspects: Linear Static Single Assignment for global regis-
ter allocation; copy extension for coalescing, spilling, and register bank assignment;
and alternative temporaries for spill code optimization and ultimate coalescing.
The dissertation also proposes a solving technique (C4) that exploits the properties
of the program representations to decompose the combinatorial problem for scala-
bility and robustness. The combination of these contributions yields an approach
that is empirically shown (C5) to be practical (in that it is robust across different
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benchmarks and scales up to medium-size functions) and effective (in that it yields
better code than traditional heuristic approaches).

4.2 Application Areas

The constraint-based code generation approach proposed in this dissertation is most
suitable for environments where longer compilation times are tolerable if they can
be traded off for higher code quality. An example is the area of embedded systems,
where the code quality requirements are often demanding, and deployed programs
might be executed during long periods of time without being updated [53]. Another
possible application area is in the compilation of release versions of high-quality
libraries.

An additional application of the constraint-based code generator is to generate
high-quality code for processors with irregular features, such as clustering [28] and
register pairing [13]. Traditional code generation approaches are hard to adapt to
such irregular processors and often yield code of unsatisfactory quality [66]. As
a consequence, critical software components in irregular processors are often pro-
grammed in assembly code, which is unproductive, non-portable, and error-prone.
The high-level, declarative nature of the combinatorial model makes this disserta-
tion’s approach a natural alternative to traditional code generators for handling
processor irregularities.

4.3 Future Work

This section identifies five research directions in which the work presented in the
dissertation can be extended.

Model extensions. A limitation of the combinatorial model is the local scope
of instruction scheduling. This limitation affects particularly VLIW processors by
restraining the amount of instruction-level parallelism that they can exploit [27].
As Publication A shows, there exist combinatorial approaches for different scopes
of instruction scheduling, including local, superblock [50], trace [27], and global
scheduling, as well as software pipelining [80]. The ideas underlying these ap-
proaches could be incorporated to the model. The research question is whether
this can be done without severely sacrificing the scalability of the code generator.

Another limitation of the model is the lack of rematerialization. Alternative
temporaries make it possible to incorporate simple versions of this subtask, such
as rematerialization of constants [14]. However, two fundamental questions remain
open: a) to which extent is it possible to incorporate a more general version of re-
materialization without increasing the size of the model dramatically? and b) given
that rematerialization is mostly a global subtask, how would its incorporation affect
the decomposition scheme of the code generator?
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Instruction selection. Instruction selection forms, together with register allo-
cation and instruction scheduling, the core of a code generator. The three tasks are
strongly interdependent on each other [56]. The model proposed in this dissertation
captures only a basic version of instruction selection where instructions are selected
out of alternatives to implement operations. An interesting research question is how
to extend the model to encompass the full scope of instruction selection without
causing an explosion in its size.

Unpredictable processor features. Cache memories and other unpredictable
processor features lead to instruction latencies which are unknown at compilation
time. To the best of our knowledge, all combinatorial approaches to code generation
assume the best case for such latencies and rely on hardware mechanisms such as
pipeline blocking to handle worse cases. This assumption may underestimate the
contribution of unknown latencies to the objective function.

An open question is how to handle uncertain latencies in a combinatorial model
more accurately. A first attempt could be to compensate the underestimation
with additional costs for executing instructions with uncertain latencies. A more
systematic direction is to explore the combination of stochastic optimization with
cache analysis techniques.

Code generator improvements. Many opportunities to speed up the code gen-
erator remain open. Constraint programming offers a wide array of solving tech-
niques of which only a few have been explored. Some examples of techniques that
have not been fully exploited are: custom propagation, symmetry breaking, domi-
nance constraints [91], nogood learning, and randomized restarts [94].

Hybridization of different combinatorial optimization techniques is a promising
area, since different techniques have often complementary strengths. Some tech-
niques that could be hybridized with the current code generator are: approximation
algorithms [19, Chapter 35], to obtain reasonable solutions with polynomial time
guarantees; large neighborhood search [88], to improve scalability; and integer pro-
gramming [48], to aid finding provably optimal solutions.

Open code generation. The flexibility offered by combinatorial code generation
can be exploited to give compiler users a higher degree of control over the generated
code. An interesting research direction is to study how to handle fine-grained
requirements (such as the makespan of a basic block within a larger function) and
preferences (such as different optimization goals for different regions of the same
function). Requirements and preferences could be expressed by the user in the
source code. The challenge is to devise a code generator that handles such degree
of openness while remaining robust and scalable.
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