
Constraint-Based Register Allocation and
Instruction Scheduling

ROBERTO CASTAÑEDA LOZANO

Doctoral Thesis in Information and Communication Technology
Stockholm, Sweden 2018

TRITA-EECS-AVL-2018:48
ISBN: 978-91-7729-853-3

KTH, School of Electrical Engineering
and Computer Science

Electrum 229
SE-164 40 Kista

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i informations-
och kommunikationsteknik på måndagen den 3 september 2018 kl. 13:15 i Sal Ka-
208, Electrum, Kistagången 16, Kista.

© Roberto Castañeda Lozano, July 2018. All previously published papers were
reproduced with permission from the publisher.

Tryck: Universitetsservice US AB

Abstract

Register allocation (mapping variables to processor registers or mem-
ory) and instruction scheduling (reordering instructions to improve latency
or throughput) are central compiler problems. This dissertation proposes
a combinatorial optimization approach to these problems that delivers op-
timal solutions according to a model, captures trade-offs between conflicting
decisions, accommodates processor-specific features, and handles different op-
timization criteria.

The use of constraint programming and a novel program representation
enables a compact model of register allocation and instruction scheduling.
The model captures the complete set of global register allocation subproblems
(spilling, assignment, live range splitting, coalescing, load-store optimization,
multi-allocation, register packing, and rematerialization) as well as additional
subproblems that handle processor-specific features beyond the usual scope
of conventional compilers.

The approach is implemented in Unison, an open-source tool used in in-
dustry and research that complements the state-of-the-art LLVM compiler.
Unison applies general and problem-specific constraint solving methods to
scale to medium-sized functions, solving functions of up to 647 instructions
optimally and improving functions of up to 874 instructions. The approach
is evaluated experimentally using different processors (Hexagon, ARM and
MIPS), benchmark suites (MediaBench and SPEC CPU2006), and optimiza-
tion criteria (speed and code size reduction). The results show that Unison
generates code of slightly to significantly better quality than LLVM, depend-
ing on the characteristics of the targeted processor (1% to 9.3% mean esti-
mated speedup; 0.8% to 3.9% mean code size reduction). Additional experi-
ments for Hexagon show that its estimated speedup has a strong monotonic
relationship to the actual execution speedup, resulting in a mean speedup of
5.4% across MediaBench applications.

The approach contributed by this dissertation is the first of its kind that
is practical (it captures the complete set of subproblems, scales to medium-
sized functions, and generates executable code) and effective (it generates
better code than the LLVM compiler, fulfilling the promise of combinatorial
optimization). It can be applied to trade compilation time for code quality
beyond the usual optimization levels, explore and exploit processor-specific
features, and identify improvement opportunities in conventional compilers.

Sammanfattning

Registerallokering (tilldelning av programvariabler till processorregister
eller minne) och instruktionsschemaläggning (omordning av instruktioner för
att förbättra latens eller genomströmning) är centrala kompilatorproblem.
Denna avhandling presenterar en kombinatorisk optimeringsmetod för dessa
problem. Metoden, som är baserad på en formell modell, är kraftfull nog att ge
optimala lösningar och göra avvägningar mellan motstridiga optimeringsval.
Den kan till fullo uttnyttja processorspecifika funktioner och uttrycka olika
optimeringsmål.

Användningen av villkorsprogrammering och en ny programrepresentation
möjliggör en kompakt modell av registerallokering och instruktionsschemaläg-
gning. Modellen omfattar samtliga delproblem som ingår i global register-
allokering: spilling, tilldelning, live range splitting, coalescing, load-store-
optimering, flertilldelning, registerpackning och rematerialisering. Förutom
dessa, kan den också integrera processorspecifika egenskaper som går utanför
vad konventionella kompilatorer hanterar.

Metoden implementeras i Unison, ett öppen-källkods-verktyg som an-
vänds inom industri- och forskningsvärlden och utgör ett komplement till
LLVM-kompilatorn. Unison tillämpar allmänna och problemspecifika vil-
lkorslösningstekniker för att skala till medelstora funktioner, lösa funktioner
med upp till 647 instruktioner optimalt och förbättra funktioner på upp till
874 instruktioner. Metoden utvärderas experimentellt för olika målproces-
sorer (Hexagon, ARM och MIPS), benchmark-sviter (MediaBench och SPEC
CPU2006) och optimeringsmål (hastighet och kodstorlek). Resultaten visar
att Unison genererar kod av något till betydligt bättre kvalitet än LLVM.
Den uppskattade hastighetsförbättringen varierar mellan 1% till 9.3% och
kodstorleksreduktionen mellan 0.8% till 3.9%, beroende på målprocessor. Yt-
terligare experiment för Hexagon visar att dess uppskattade hastighetsför-
bättring har ett starkt monotoniskt förhållande till den faktiska exekver-
ingstiden, vilket resulterar i en 5.4% genomsnittlig hastighetsförbättring för
MediaBench-applikationer.

Denna avhandling beskriver den första praktiskt användbara kombina-
toriska optimeringsmetoden för integrerad registerallokering och instruktion-
sschemaläggning. Metoden är praktiskt användbar då den hanterar samtliga
ingående delproblem, genererar exekverbar maskinkod och skalar till medel-
stora funktioner. Den är också effektiv då den genererar bättre maskinkod
än LLVM-kompilatorn. Metoden kan tillämpas för att byta kompileringstid
mot kodkvalitet utöver de vanliga optimeringsnivåerna, utforska och utnyttja
processorspecifika egenskaper samt identifiera förbättringsmöjligheter i kon-
ventionella kompilatorer.

A Adrián y Eleonore. Que sigamos riendo juntos por muchos años.

Acknowledgements

First of all, I would like to thank my main supervisor Christian Schulte. I could
not have asked for a better source of guidance and inspiration through my doctoral
studies. Thanks for teaching me pretty much everything I know about research,
and thanks for the opportunity to work together on such an exciting project over
these many years!

I am also grateful to my co-supervisors Mats Carlsson and Ingo Sander for
enriching my supervision with valuable feedback, insightful discussions, and com-
plementary perspectives.

Many thanks to Laurent Michel for acting as opponent, to Krzysztof Kuchcinski,
Marie Pelleau, and Konstantinos Sagonas for acting as examining committee, to
Martin Monperrus for contributing to my doctoral proposal and acting as internal
reviewer, and to Philipp Haller for chairing the defense. I am also very grateful to
Peter van Beek and Anne Håkansson for acting as opponent and internal reviewer
of my licentiate thesis.

Thanks to all my colleagues (and friends) at RISE SICS and KTH for creat-
ing a fantastic research environment. In particular, thanks to my closest colleague
Gabriel Hjort Blindell with whom I have shared countless failures, some successes,
and many laughs. I am also grateful to Sverker Janson for stimulating and en-
couraging discussions, to Frej Drejhammar for supporting me day after day with
technical insights and good humor, and to all interns and students from whom I
have learned a lot.

Thanks to Ericsson for funding my research and for providing inspiration and
experience “from the trenches”. The input from Patric Hedlin and Mattias Eriksson
has been particularly valuable in guiding the research and keeping it focused.

I also wish to thank my parents and brother for their love, understanding, and
support. Last but not least I simply want to thank Eleonore, our latest family
member Adrián, the rest of my Spanish family, my Swedish family, and my friends
in Valencia and Stockholm for giving meaning to my life.

Contents

I Overview 1

1 Introduction 3
1.1 Background . 4
1.2 Thesis Statement . 8
1.3 Approach . 9
1.4 Methods . 10
1.5 Contributions . 11
1.6 Publications . 12
1.7 Outline . 13

2 Constraint Programming 15
2.1 Modeling . 15
2.2 Solving . 17

3 Summary of Publications 25
3.1 Survey on Combinatorial Register Allocation and Instruction

Scheduling . 25
3.2 Constraint-based Register Allocation and Instruction Scheduling . . 28
3.3 Combinatorial Spill Code Optimization and Ultimate Coalescing . . 34
3.4 Combinatorial Register Allocation and Instruction Scheduling 38
3.5 Register Allocation and Instruction Scheduling in Unison 42
3.6 Individual Contributions . 42

4 Conclusion and Future Work 43
4.1 Applications . 44
4.2 Future Work . 44

Bibliography 49

Part I

Overview

1

Chapter 1

Introduction

A compiler translates a source program written in a high-level language into a
lower-level target language. Typically, source programs are written by humans in a
programming language such as C or Rust while target programs consist of assembly
code to be executed by a processor. Compilers are an essential component of the
development toolchain, as they allow programmers to concentrate on designing al-
gorithms and data structures rather than dealing with the intricacies of a particular
processor.

Today’s compilers are required to generate high-quality code in the face of ever-
evolving processors and optimization criteria. The compiler problems of register
allocation and instruction scheduling studied in this dissertation are central to this
challenge, as they have a substantial impact on code quality [46,69,109] and are sen-
sitive to changes in processors and optimization criteria. Conventional approaches
to these problems, such as those employed by GCC [50] or LLVM [94], are based on
40-year old techniques that are hard to adapt. As a consequence, these compilers
have difficulties keeping up with the fast pace of change. For example, despite the
growing interest in reducing power consumption, conventional compilers struggle
with exploiting new power reduction processor features [64] and rarely explore the
generation of energy-efficient assembly code [127].

This dissertation proposes an approach to register allocation and instruction
scheduling based on constraint programming, a radically different technique. The
approach is practical and effective: it delivers high-quality code and can be read-
ily adapted to new processor features and optimization criteria, at the expense of
increased compilation time. The resulting compiler enables trading compilation
time for code quality beyond the conventional optimization levels, adapting to new
processor features and optimization criteria, and identifying improvement oppor-
tunities in existing compilers.

3

source
program front-end IR middle-end IR back-end

assembly
code

processor description

Figure 1.1: Compiler structure.

1.1 Background

Compiler structure and code generation. Compilers are usually structured
into a front-end, a middle-end, and a back-end, as shown in Figure 1.1. The front-
end translates the source program into a processor-independent intermediate rep-
resentation (IR). The middle-end performs processor-independent optimizations at
the IR level. The back-end generates code corresponding to the IR according to a
given processor description.

Compiler back-ends solve three main problems to generate code: instruction
selection, register allocation, and instruction scheduling. Instruction selection re-
places abstract IR operations by specific instructions for a particular processor.
Register allocation assigns temporaries (program or compiler-generated variables)
to processor registers or to memory. Instruction scheduling reorders instructions to
improve total latency or throughput. This dissertation is concerned with register
allocation and instruction scheduling.

Register allocation and instruction scheduling. Register allocation and in-
struction scheduling are NP-hard combinatorial problems for realistic processors [18,
27,68]. Thus, we cannot expect to find an algorithm that delivers optimal solutions
in polynomial time. Furthermore, the two problems are interdependent in that the
solution to one of them affects the other [58]. Aggressive instruction scheduling
tends to increase the number of registers needed to allocate the program’s tempo-
raries, which may degrade the result of a later register allocation run. Conversely,
aggressive register allocation tends to increase register reuse, which introduces ad-
ditional dependencies between instructions and may degrade the result of a later
instruction scheduling run [60].

Processor registers have fast access times but are limited in number. When the
number of registers is insufficient to accommodate all program temporaries, some
of the temporaries must be stored in memory. The problem of deciding which of
them is stored in memory is called spilling. Spilling is a key subproblem of register
allocation since memory access can be orders of magnitude more expensive than
register access. Register allocation is associated with a large set of subproblems
that typically aim at reducing the amount and overhead of spilling:

• register assignment maps non-spilled temporaries to individual registers, re-
ducing the amount of spilling by reusing registers whenever possible;

4

• live range splitting allocates temporaries to different registers at different
points of the program execution;

• coalescing removes unnecessary register-to-register move instructions by as-
signing split temporaries to the same register;

• load-store optimization removes unnecessary memory access instructions in-
serted by spilling;

• multi-allocation allocates temporaries to registers and memory simultaneously
to reduce the overhead of spilling;

• register packing assigns multiple small temporaries to the same register; and

• rematerialization recomputes the values of temporaries at their use points as
an alternative to storing them in registers or memory.

Instruction scheduling reorders instructions to improve total latency or through-
put. The reordering must satisfy dependency and resource constraints. The depen-
dency constraints impose a partial order among instructions induced by data and
control flow in the program. The resource constraints are induced by limited pro-
cessor resources (such as functional units and buses), whose capacity cannot be
exceeded at any point of the schedule.

Instruction scheduling is particularly challenging for very long instruction word
(VLIW) processors, which exploit instruction-level parallelism by executing stati-
cally scheduled bundles of instructions in parallel [46]. The subproblem of grouping
instructions into bundles is referred to as instruction bundling.

Instruction scheduling can target in-order processors (which issue instructions
in the order given by the compiler’s schedule) or out-of-order processors (which
might issue the instructions in a different order). This dissertation focuses on the
former, but the models and methods contributed are directly applicable to both [60].
An accuracy study for out-of-order processors is part of future work [21].

Register allocation and instruction scheduling can be solved at different program
scopes. Local code generation works on single basic blocks (sequence of instructions
without control flow); global code generation increases the optimization scope by
working on entire functions.

Conventional approach. Code generation in the back-ends of conventional com-
pilers such as GCC [50] or LLVM [94] is arranged in stages as depicted in Figure 1.2.
The first stage corresponds to instruction selection, a problem that lies outside the
scope of this dissertation. This stage is followed by a first instruction scheduling
stage that reorders the selected instructions, a register allocation stage that assigns
temporaries to processor registers or to memory, and a second instruction scheduling
stage that accommodates memory access and register-to-register move instructions
inserted by register allocation. This arrangement where each problem is solved
in isolation improves the modularity of the compiler and yields fast compilation

5

IR
instruction
selection

instruction
scheduling

register
allocation

instruction
scheduling

assembly
code

processor description

Figure 1.2: Structure of a conventional compiler back-end.

times, but precludes the possibility of generating optimal code by disregarding the
interdependencies between the different problems [85].

Conventional compilers resort to heuristic algorithms to solve each problem, as
taking optimal decisions is commonly considered impractical. Heuristic algorithms
(also referred to as greedy algorithms [33]) solve a problem by taking a sequence
of greedy decisions based on local criteria. For example, list scheduling [119] (the
most popular heuristic algorithm for instruction scheduling) chooses one instruction
to be scheduled at a time without ever reconsidering a choice. Common heuris-
tic algorithms for register allocation include graph coloring [20, 27, 54] and linear
scan [115]. These heuristic algorithms cannot find optimal solutions in general due
to their greedy nature. Because they are typically designed for a certain processor
model and optimization criterion, adapting to new processor features and criteria is
complicated as it requires revisiting their design and tuning their heuristic choices.

To summarize, conventional compiler back-ends are arranged in stages, where
each stage solves a code generation problem applying heuristic algorithms. This
set-up delivers fast compilation times but precludes by construction optimal code
generation and complicates adapting to new processor features and optimization
criteria.

Combinatorial optimization. Combinatorial optimization is a collection of com-
plete, general-purpose techniques to model and solve hard combinatorial problems,
such as register allocation and instruction scheduling. Complete techniques au-
tomatically explore the full solution space and guarantee to eventually find the
optimal solution to a combinatorial problem, if there is one. Prominent combina-
torial optimization techniques include constraint programming (CP) [124], integer
programming (IP) [110], and Boolean satisfiability (SAT) [56].

These techniques approach combinatorial problems in two steps: first, a problem
is captured as a formal model composed of variables, constraints over the variables,
and possibly an objective function that characterizes the quality of different variable
assignments. Then, the model is given to a generic solver which automatically finds
solutions consisting of valid assignments of the variables, or proves that there is
none.

The most popular combinatorial optimization technique for code generation is
IP. IP models consist of integer variables, linear inequality constraints over the
variables, and a linear objective function to be optimized. IP solvers exploit linear

6

IR
instruction
selection

register
allocation

instruction
scheduling

integrated
combinatorial

problem
solver

assembly
code

processor description

Figure 1.3: Structure of a combinatorial compiler back-end.

relaxations, where the variables are allowed to take real values, in combination
with search. More advanced IP solving methods such as column generation [35]
and cutting-plane methods [111] are often applied to solve large problems.

CP is an alternative combinatorial optimization technique that has been less
often applied to code generation problems. From the modeling point of view, CP
can be seen as a generalization of IP where the variables typically take values from
a finite subset of the integers, and the constraints and the objective function are
expressed by general relations on the problem variables. Such relations are often for-
malized as global constraints that express common problem substructures involving
several variables. CP solvers proceed by interleaving search with constraint propa-
gation. The latter reduces the search space by discarding values for variables that
cannot be part of any solution. Global constraints play a key role in propagation, as
they are implemented by efficient and effective propagation algorithms. Advanced
CP solving methods include decomposition, symmetry breaking, dominance con-
straints [132], programmable search, and nogood learning [135]. Chapter 2 discusses
modeling and solving with CP in further detail.

Combinatorial approach. An alternative to the use of heuristic algorithms in
conventional compiler back-ends is to apply combinatorial optimization techniques.
This approach translates the different code generation problems (register allocation
and instruction scheduling in the scope of this dissertation) into combinatorial
models. The combinatorial problems corresponding to each model are then solved
in integration with a generic solver. The solution computed by the solver is finally
translated into assembly code as shown in Figure 1.3.

The combinatorial approach is potentially optimal according to a formal model,
as it integrates register allocation and instruction scheduling and solves the inte-
gration with complete optimization techniques. The use of formal models eases the
construction of compiler back-ends, simplifies adapting to new processor features,
and enables expressing different optimization criteria accurately and unambigu-
ously.

7

The advantages of the combinatorial approach come today at the expense of
increased compilation time compared to the conventional approach. Thus, the
combinatorial approach can currently be used as a complement to conventional
compilers, enabling trading compilation time for code quality. The compilation time
gap between both approaches has been substantially reduced in the latest 30 years
and is expected to keep decreasing due to continuous advances in combinatorial
optimization techniques [79,92].

Limitations of available combinatorial approaches. Despite the multiple
advantages of combinatorial code generation, the state-of-the-art approaches prior
to this dissertation suffer from several limitations that complicate their evaluation
and make them impractical for production-quality compilers: they are incomplete
because they do not model all subproblems handled by conventional compiler back-
ends, they do not scale beyond small problems of up to 100 instructions, and they
do not generate executable code. Most prior combinatorial approaches to integrated
register allocation and instruction scheduling are based on integer programming.
These approaches are extensively reviewed in Publication A (see Section 1.6) and
related to the contributions of this dissertation in Chapter 3.

Research goal. The goal of this research is to devise a combinatorial approach
to integrated register allocation and instruction scheduling that is practical and
hence usable in a modern compiler. To be considered practical, the approach must
model the complete set of subproblems handled by conventional compilers, scale to
problems of realistic size, and generate executable code.

1.2 Thesis Statement

This dissertation proposes a constraint programming approach to integrated reg-
ister allocation and instruction scheduling. The thesis of the dissertation can be
stated as follows:

The integration of register allocation and instruction scheduling using constraint
programming is practical and effective.

The proposed approach is practical as it is complete, scales to medium-sized
problems of up to 1000 instructions (including the vast majority of problems ob-
served in typical benchmark suites), and generates executable code. It is effective as
it yields better code than the conventional approach for different processors, bench-
mark suites, and optimization criteria, delivering on the promise of combinatorial
optimization.

Constraint programming (CP) has several characteristics that make it a partic-
ularly suitable combinatorial technique to model and solve the integrated register
allocation and instruction scheduling problem. On the modeling side, global con-
straints can be used to capture the main structure of different subproblems such as

8

register packing and scheduling with limited processor resources. Thanks to these
high-level abstractions, complete yet compact CP models can be formulated that
avoid an explosion in the number of variables and constraints. On the solving side,
global constraints can reduce the search space exponentially by increasing the effect
of propagation. Also, CP solvers are highly customizable, which enables the use of
problem-specific solving methods to improve scalability. Finally, the high level of
abstraction of CP models makes it possible to apply hybrid solving techniques of
complementary strengths.

1.3 Approach

The constraint-based approach proposed in this dissertation implements the general
scheme of a combinatorial back-end depicted in Figure 1.3 as follows. The IR of a
function and a processor description are taken as input. The function is assumed to
be in static single assignment (SSA) form, a program form in which temporaries are
defined exactly once [34]. Instruction selection is run using a heuristic algorithm,
producing a function in SSA with instructions of the targeted processor. The SSA
representation of the function is transformed into a representation that exposes the
structure and the multiple decisions involved in the problem.

The register allocation and instruction scheduling problems for the transformed
function are translated into an integrated constraint model that takes into account
the characteristics and limitations of the targeted processor. The model can be
easily adapted to different optimization criteria such as speed or code size by in-
stantiating a generic objective function. The integrated constraint model is solved
by a hybrid CP-SAT solver [30], a custom CP solver that exploits the program
representation for scalability, or a combination of the two. The scalability of the
solvers is boosted by an array of modeling and solving improvements.

The approach is implemented by Unison, an open-source software tool [26] that
complements the state-of-the-art conventional compiler LLVM. Unison is applied
both in industry [140] and in further research projects [82, 86]. Thorough experi-
ments for different processors (Hexagon [31], ARM [6] and MIPS [77]), benchmark
suites (MediaBench [96] and SPEC CPU2006 [70]), and optimization criteria (speed
and code size reduction) show that Unison:

• generates code of slightly to significantly better quality than LLVM depending
on the characteristics of the targeted processor (1% to 9.3% mean estimated
speedup; 0.8% to 3.9% mean code size reduction);

• generates executable Hexagon code for which the estimated speedup indeed
results in actual speedup (5.4% mean speedup on MediaBench applications);

• scales to medium-sized functions, solving functions of up to 647 instructions
optimally and improving functions of up to 874 instructions; and

9

• can be easily adapted to capture additional processor features and different
optimization criteria.

1.4 Methods

This dissertation combines descriptive, applied, and experimental research.

Descriptive research. The existing approaches to combinatorial register alloca-
tion and instruction scheduling are studied using a classical survey method. The
study (reflected in Publication A, see Section 1.6) identifies developments, trends,
and challenges in the area using a detailed classification of the approaches.

Applied and experimental research. The initial hypothesis of this research
is that the integration of register allocation and instruction scheduling using con-
straint programming is practical and effective. This hypothesis has been tested
using applied and experimental research in an interleaved fashion. Taking the sur-
vey as a start point, constraint models and program representations are constructed
that extend the capabilities of the state-of-the-art approaches. The models and the
program representations exploit existing theory from constraint programming (such
as global constraints) and compiler construction (such as the SSA form). Con-
structing the models and the program representations has been interleaved with
experimental research via a software implementation. The experiments serve two
purposes: testing the hypothesis and validating the models and program represen-
tations.

The model and its implementation have been evolved incrementally, by increas-
ing in each iteration the scope of the problem modeled (that is, solving more sub-
problems in integration) and the complexity of the targeted processors. This process
involves six major iterations:

1. build a simple model of local instruction scheduling for a simple general-
purpose processor;

2. extend the model with local register allocation for a more complex VLIW
digital signal processor;

3. increase the scope of the model to entire functions;

4. extend the model with the subproblems of load-store optimization, multi-
allocation, and a refined form of coalescing;

5. extend the model with the subproblem of rematerialization; and

6. extend the model to capture additional processor-specific features.

10

Software benchmarks are used as input data to conduct experimental research
after each iteration. The SPEC CPU2006 [70] and MediaBench [96] benchmark
suites are selected as they are widely employed in embedded and general-purpose
compiler research. These benchmarks match the application domains of the tar-
geted processors: Hexagon [31] (a digital signal processor), ARM [6] (a general-
purpose processor) and MIPS [77] (an embedded processor). SPEC CPU2006 and
MIPS are used in Publication B, MediaBench and Hexagon are used in Publica-
tion C, and all of the benchmarks and processors (including ARM) are used in
Publication D (see Section 1.6). The experimental results are compared to the
existing approaches using the classification built in the survey.

The following quality assurance principles are taken into account in the conduc-
tion of the experimental research:

• validity (different benchmarks and processors are used),

• reliability (experiments are repeated and the variability is taken into account),
and

• reproducibility (the software implementation used for experimentation is avail-
able as open source and the procedures to reproduce the experiments are
described in detail in the publications).

1.5 Contributions

This dissertation makes the following contributions to the areas of compiler con-
struction and constraint programming:

C1 an exhaustive literature review and classification of combinatorial approaches
to register allocation and instruction scheduling;

C2 a program representation that enables modeling the problem by exposing its
structure and the decisions involved in it;

C3 a complete combinatorial model of global register allocation and local instruc-
tion scheduling;

C4 model extensions to capture additional, interdependent subproblems that are
usually approached in isolation by conventional compilers;

C5 a solving method that exploits the properties of the program representation
to improve scalability;

C6 extensive experiments for different processors and benchmarks demonstrat-
ing that the approach yields better code than conventional compilers (in esti-
mated and actual speedup, and code size reduction) and scales up to medium-
sized functions;

11

C7 a study of the accuracy of the speedup estimation used to guide the optimiza-
tion process; and

C8 Unison, an open software tool used in research and industry that implements
the approach. Unison is available on GitHub [26].

These contributions are explained in further detail and related to the existing
literature in Chapter 3.

1.6 Publications

This dissertation is arranged as a compilation thesis. It includes the following
publications:

• Publication A: Survey on Combinatorial Register Allocation and Instruction
Scheduling. Roberto Castañeda Lozano and Christian Schulte. To appear in
ACM Computing Surveys. 2018.

• Publication B: Constraint-based Register Allocation and Instruction Schedul-
ing. Roberto Castañeda Lozano, Mats Carlsson, Frej Drejhammar, and Chris-
tian Schulte. In Principles and Practice of Constraint Programming, volume
7514 of Lecture Notes in Computer Science, pages 750–766. Springer, 2012.

• Publication C: Combinatorial Spill Code Optimization and Ultimate Coa-
lescing. Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell,
and Christian Schulte. In Languages, Compilers, Tools and Theory for Em-
bedded Systems, pages 23–32. ACM, 2014.

• Publication D: Combinatorial Register Allocation and Instruction Schedul-
ing. Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and
Christian Schulte. Technical report, submitted for publication. Archived at
arXiv:1804.02452 [cs.PL], 2018.

• Publication E: Register Allocation and Instruction Scheduling in Unison.
Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Chris-
tian Schulte. In Compiler Construction, pages 263–264. ACM, 2016. The
Unison software tool is available at http://unison-code.github.io/.

Table 1.1 shows the relation between the five publications and the contributions
listed in Section 1.5.

The author has also participated in the following publications outside of the
scope of the dissertation:

1. Testing Continuous Double Auctions with a Constraint-based Oracle. Roberto
Castañeda Lozano, Christian Schulte, and Lars Wahlberg. In Principles and
Practice of Constraint Programming, volume 6308 of Lecture Notes in Com-
puter Science, pages 613–627. Springer, 2010.

12

http://unison-code.github.io/

publication C1 C2 C3 C4 C5 C6 C7 C8
A (Section 3.1) ✓ - - - - - - -
B (Section 3.2) - ✓ ✓ - ✓ ✓ - -
C (Section 3.3) - ✓ ✓ - - ✓ - -
D (Section 3.4) - ✓ ✓ ✓ - ✓ ✓ -
E (Section 3.5) - - - - - - - ✓

Table 1.1: Contributions by publication.

2. Constraint-based Code Generation. Roberto Castañeda Lozano, Gabriel Hjort
Blindell, Mats Carlsson, Frej Drejhammar, and Christian Schulte. Extended
abstract published in Software and Compilers for Embedded Systems, pages
93–95. ACM, 2013.

3. Unison: Assembly Code Generation Using Constraint Programming. Roberto
Castañeda Lozano, Gabriel Hjort Blindell, Mats Carlsson, and Christian
Schulte. System demonstration at Design, Automation and Test in Europe
2014.

4. Optimal General Offset Assignment. Sven Mallach and Roberto Castañeda
Lozano. In Software and Compilers for Embedded Systems, pages 50–59.
ACM, 2014.

5. Modeling Universal Instruction Selection. Gabriel Hjort Blindell, Roberto
Castañeda Lozano, Mats Carlsson, Christian Schulte. In Principles and Prac-
tice of Constraint Programming, volume 9255 of Lecture Notes in Computer
Science, pages 609–626. Springer, 2015.

6. Complete and Practical Universal Instruction Selection. Gabriel Hjort Blin-
dell, Mats Carlsson, Roberto Castañeda Lozano, Christian Schulte. In ACM
Transactions on Embedded Computing Systems, pages 119:1–119:18. 2017.

Publication 1 is excluded since it is only partially related to the dissertation
in that it applies constraint programming to a fundamentally different problem.
Publications 2 and 3 are excluded since they are subsumed by Publications B-D in
this dissertation. Publications 4, 5, and 6 are excluded since the main part of the
work has been carried out by others.

1.7 Outline

This dissertation is arranged as a compilation thesis consisting of two parts. Part I
(including this chapter) presents an overview of the dissertation. The overview is
partially based on the author’s licentiate dissertation [22]. Part II contains the
reprints of Publications A-E reformatted for readability.

13

The remainder of Part I is organized as follows. Chapter 2 provides additional
background on modeling and solving combinatorial problems with constraint pro-
gramming. Chapter 3 summarizes each publication and clarifies the individual
contributions of the dissertation author. Chapter 4 concludes Part I and proposes
applications and future work.

14

Chapter 2

Constraint Programming

Constraint programming (CP) is a combinatorial optimization technique that is
particularly effective at solving hard combinatorial problems. CP captures problems
as models with variables, constraints over the variables, and possibly an objective
function describing the quality of different solutions. From the modeling point
of view, CP offers a higher level of abstraction than alternative techniques such
as integer programming (IP) [110] and Boolean satisfiability (SAT) [56] since CP
models are not limited to particular variable domains or types of constraints. From
a solving point of view, CP is particularly suited to tackle practical challenges
such as scheduling, resource allocation, and rectangle packing problems since it can
exploit substructures that are commonly found in these problems [139].

This chapter provides the background in CP that is required to follow the rest
of the dissertation, particularly Publications B-D. A more comprehensive overview
of CP can be found in the handbook edited by Rossi et al. [124].

2.1 Modeling

The first step in solving a combinatorial problem with CP is to characterize
its solutions in a formal model [132]. CP provides two basic modeling elements:
variables and constraints over the variables. The variables represent problem de-
cisions while the constraints express relations over these decisions. The variable
assignments that satisfy the model constraints make up the solutions to the mod-
eled combinatorial problem. An objective function can be additionally included to
characterize the quality of different solutions.

Modeling elements. In CP, variables can take values from different types of
finite domains. The most common variable domains are integers and Booleans.
Other variable domains frequently used in CP are floating point values and sets of
integers. More complex domains include multisets, strings, and graphs [55].

15

Variables:
x ∈ {1,2}
y ∈ {1,2}
z ∈ {1,2,3,4,5}

Constraints:
x ≠ y;x ≠ z; y ≠ z
x + y = z

Figure 2.1: Running example: basic constraint model.

The most general way to define constraints is by providing a set of feasible com-
binations of values over some variables. Unfortunately, these constraints become
easily impractical, as all valid combinations must be enumerated explicitly. Thus,
constraint models typically provide different types of constraints with implicit se-
mantics such as equality and inequality among integer variables and conjunction
and disjunction among Boolean variables.

Figure 2.1 shows a simple constraint model that is used as a running example
through the rest of the chapter. The model includes three variables x, y, and z with
finite integer domains and two types of constraints: three disequality constraints to
ensure that each variable takes a different value, and a simple arithmetic constraint
to ensure that z is the sum of x and y.

Global constraints. Constraints can be classified according to the number of
involved variables. Constraints involving three or more variables are often referred
to as global constraints [139]. Global constraints are one of the key strengths of CP
since they make models compact and structured and improve solving as explained
in Section 2.2.

Global constraints typically capture common substructures occurring in differ-
ent types of problems. Some examples are: linear equality and inequality, pair-
wise disequality, value counting, ordering, array access, bin-packing, geometrical
packing, and scheduling constraints. Constraint models typically combine multiple
global constraints to capture different substructures of the modeled problems. An
exhaustive description of available global constraints can be found in the Global
Constraint Catalog [16].

The most relevant global constraints in this dissertation are: all-different [121] to
ensure that several variables take pairwise distinct values, global-cardinality [122] to
ensure that several variables take a value a given number of times, element [137] to
ensure that a variable is equal to the element of an array that is indexed by another
variable, cumulative [2] to ensure that the capacity of a resource is not exceeded
by a set of tasks represented by start time variables, and no-overlap [14] (referred
to as disjoint2 in Publication B) to ensure that several rectangles represented by
coordinate variables do not overlap.

16

Variables:
. . .

Constraints:
all-different({x, y, z})
x + y = z

Figure 2.2: Constraint model with global all-different constraint.

Variables:
. . .

Constraints:
. . .

Objective:
maximize z

Figure 2.3: Constraint model with objective function.

Figure 2.2 shows the running example where the three disequality constraints
are replaced by a global all-different constraint. The use of all-different makes the
structure of the problem more explicit, the model more compact, and the solving
process more efficient as illustrated in Section 2.2.

Optimization. Many combinatorial problems include a notion of quality to be
maximized (or cost to be minimized). This can be expressed in a constraint model
by means of an objective function that characterizes the quality of different solu-
tions. Figure 2.3 shows the running example extended with an objective function
to maximize the value of z.

2.2 Solving

CP solves constraint models by propagation [17] and search [135]. Propagation
discards values for variables that cannot be part of any solution. When no fur-
ther propagation is possible, search tries several alternatives on which propagation
and search are repeated. CP solvers are able to solve simple constraint models
automatically by just applying this procedure. However, as the complexity of the
models increases, the user often needs to resort to advanced solving methods such
as model reformulations, decomposition, presolving, and portfolios to contain the
combinatorial explosion that is inherent to hard combinatorial problems.

17

event x y z

initially {1,2} {1,2} {1,2,3,4,5}
propagation for x + y = z {1,2} {1,2} {2,3,4}

Table 2.1: Propagation for the constraint model from Figure 2.1.

Propagation. CP solvers keep track of the values that can be assigned to each
variable by maintaining a data structure called the constraint store. The model con-
straints are implemented by propagators. Propagators can be seen as functions on
constraint stores that discard values according to the semantics of the constraints
that they implement. Propagation is typically arranged as a fixpoint mechanism
where individual propagators are invoked repeatedly until the constraint store can-
not be reduced anymore. The architecture and implementation of propagation is
thoroughly discussed by Schulte and Carlsson [126].

The correspondence between constraints and propagators is a many-to-many
relationship: a constraint can be implemented by multiple propagators and vice
versa. Likewise, constraints can often be implemented by alternative propagators
with different propagation strengths. Intuitively, the strength of a propagator corre-
sponds to how many values it is able to discard from the constraint store. Stronger
propagators are able to discard more values but are typically based on algorithms
that have a higher time or space complexity. Thus, there is a trade-off between the
strength of a propagator and its cost, and often the user has to make a choice by
analysis or experimentation.

Table 2.1 shows how constraint propagation works for the constraint model
from Figure 2.1, assuming that the constraints are mapped to propagators in a
one-to-one relationship. The constraint store is initialized with the domains of
the three variables in the model. The only propagator that can propagate is that
implementing the constraint x + y = z. Since the sum of x and y cannot be less
than 2 nor more than 4, 1 and 5 are discarded as potential values for z.

One of the strengths of CP is the availability of dedicated propagation algo-
rithms that provide strong and efficient propagation for global constraints. This is
the case for all global constraints discussed in this dissertation. The all-different
constraint can be implemented by multiple propagation algorithms of different
strengths and costs [138]. The most prominent one provides the strongest pos-
sible propagation (where all values left after propagation are part of a solution for
the constraint) in subcubic time by applying matching theory [121]. The global-
cardinality constraint can be seen as a generalization of all-different. Likewise,
the strongest possible propagation can be achieved in cubic time by applying flow
theory [122]. Alternative propagation algorithms exist that are less expensive but
deliver weaker propagation [117]. The element constraint can also be fully propa-
gated efficiently [52].

In contrast, the cumulative constraint cannot be propagated in full strength in
polynomial time [49], but multiple, often complementary propagation algorithms

18

event x y z

initially {1,2} {1,2} {1,2,3,4,5}
propagation for x + y = z {1,2} {1,2} {2,3,4}
propagation for all-different {1,2} {1,2} {3,4}

Table 2.2: Propagation for the constraint model from Figure 2.2.

are available that achieve good propagation in practice [9]. Similarly to the cumula-
tive constraint, the no-overlap constraint cannot be fully propagated in polynomial
time [91], and multiple propagation algorithms exist, including constructive dis-
junction [71] and sweep methods [14].

Table 2.2 shows how using an all-different global constraint in the model from
Figure 2.2 yields stronger propagation than using simple disequality constraints.
First, the arithmetic propagator discards the values 1 and 5 for z as in the previous
example from Table 2.1. Then, the propagator implementing all-different is able to
additionally discard the value 2 for z by recognizing that this value must necessarily
be assigned to either x or y.

Search. Applying propagation only is in general insufficient to solve hard com-
binatorial problems. When propagation has reached a fixpoint and the constraint
store still contains several values for some variable (as in the examples from Ta-
bles 2.1 and Tables 2.2), CP solvers apply search to decompose the problem into
simpler subproblems. Propagation and search are applied to each subproblem in
a recursive fashion, inducing a search tree whose leaves correspond to either solu-
tions (if the constraint store contains a single value for each variable) or failures (if
some variable has no value). The way in which problems are decomposed (branch-
ing) and the order in which subproblems are visited (exploration) form a search
strategy. The choice of a search strategy can have a critical impact on solving ef-
ficiency. A key strength of CP is that search strategies are programmable by the
user, which permits exploiting problem-specific knowledge to improve solving. The
main concepts of search are explained in depth by van Beek [135].

Branching is typically arranged as a variable-value decision, where a particular
variable is selected and its set of potential values is decomposed, yielding multiple
subproblems. For example, a branching scheme following the fail-first principle
(“to succeed, try first where you are most likely to fail” [66]) may first select the
variable with the smallest domain, and then split its set of potential values into two
equally-sized components.

Exploration for a constraint model without objective function (where the goal
is typically to find one or all existing solutions) is often arranged as a depth-first
search [33]. In a depth-first search exploration, the first subproblem resulting from
branching is solved before attacking the alternative subproblems. Figure 2.4 shows
the search tree corresponding to a depth-first exploration of the constraint model
from Figure 2.2. First, the model constraints are propagated as in Table 2.2 (1).

19

x: {1,2}
y: {1,2}
z: {1 . . .5}

x: {1,2}
y: {1,2}
z: {3,4}

x: {2}
y: {1,2}
z: {3,4}

x: {2}
y: {1}
z: {3}

(5) propagation

x: {1}
y: {1,2}
z: {3,4}

x: {1}
y: {2}
z: {3}

(3) propagation

(2) branching: x = 1 (4) branching: x = 2

(1) propagation

Figure 2.4: Depth-first search for the constraint model from Figure 2.2. Circles and
diamonds represent intermediate and solution nodes.

After propagation, the constraint store still contains several values for at least one
variable, hence branching is executed (2) by propagating first the alternative x = 1
(this branching scheme is arbitrary). After branching, propagation is executed
again (3) which gives the first solution (x = 1; y = 2; z = 3). Then, the search
backtracks up to the branching node and the second alternative x = 2 is propa-
gated (4). After this, propagation is executed again (5) which gives the second and
last solution (x = 2; y = 1; z = 3).

Exploration for a constraint model with objective function (where the goal is
usually to find the best solution) is often arranged in a branch-and-bound [110]
fashion. A branch-and-bound exploration proceeds as depth-first search with the
addition that the variable corresponding to the objective function is progressively
constrained to be better than every solution found. When the solver proves that
there are no solutions left, the last found solution is optimal by construction. Fig-
ure 2.5 shows the search tree corresponding to a branch-and-bound exploration of
the constraint model from Figure 2.3. Search and propagation proceed exactly as in
the depth-first search example from Figure 2.4 until the first solution is found (1-3).
Then, the search backtracks up to the branching node and (4) the objective func-

20

x: {1,2}
y: {1,2}
z: {1 . . .5}

x: {1,2}
y: {1,2}
z: {3,4}

x: {1,2}
y: {1,2}
z: {4}

x: {2}
y: {}
z: {4}

(5) propagation

x: {1}
y: {1,2}
z: {3,4}

x: {1}
y: {2}
z: {3}

(3) propagation

(2) branching: x = 1 (4) bounding: z > 3

(1) propagation

Figure 2.5: Branch-and-bound search for the constraint model from Figure 2.3.
Circles, diamonds, and squares represent intermediate, solution, and failure nodes.

tion is constrained, for the rest of the search, to be better than in the first solution
(that is, z > 3). After bounding, propagation is executed again (5). Since z must
be equal to 4, the propagator implementing the constraint x + y = z discards the
value 1 for x and y. Then, the all-different propagator discards the value 2 for y
since this value is already assigned to x. This makes the set of potential values
for y empty which yields a failure. Since the search space is exhausted, the last and
only solution found (x = 1; y = 2; z = 3) is optimal.

Model reformulations to strengthen propagation. Combinatorial problems
can be typically captured by many alternative constraint models. In CP, it is
common that a first, naive constraint model cannot be solved in a satisfactory
amount of time. Then, the model must be iteratively reformulated to improve
solving while preserving the semantics of the original problem [132]. For example,
replacing several basic constraints by global constraints as done in Figures 2.1
and 2.2 strengthens propagation which can speed up solving exponentially.

Two common types of reformulations are the addition of implied and symme-
try breaking constraints. Implied constraints are constraints that yield additional

21

propagation without altering the set of solutions of a constraint model [132]. For
example, by reasoning about the x + y = z and all-different constraints together, it
can be seen that the only values for x and y that are consistent with the assignment
z = 4 are 1 and 3. Thus, the implied constraint (x ≠ 3) ∧ (y ≠ 3) Ô⇒ z ≠ 4 could
be added to the model1. Propagating such a constraint would avoid, for example,
steps 4 and 5 in the branch-and-bound search illustrated in Figure 2.5.

Many constraint models have symmetric solutions, that is, solutions which can
be formed by for example permuting variables or values in other solutions. Groups
of symmetric solutions form symmetry classes. Symmetry breaking constraints are
constraints that remove symmetric solutions while preserving at least one solution
per symmetry class [53]. Adding these constraints to a model can reduce the search
effort substantially. For example, in the running example the variables x and y can
be considered symmetric since permuting their values in a solution always yields
an equally valid solution with the same objective function. Adding the symmetry
breaking constraint x < y makes search unnecessary, since step 1 in Figures 2.4
and 2.5 already leads to the solution x = 1; y = 2; z = 3 which is symmetric to the
alternative solution to the original model (x = 2; y = 1; z = 3).

Constraint models with objective function may admit solutions that are dom-
inated in that they can be mapped to solutions that are always equal or better.
Similarly to symmetries, dominance breaking constraints can be added to the model
to reduce the search effort by discarding dominated solutions [132].

Decomposition. Many practical combinatorial problems consist of several sub-
problems with different classes of variables and global constraints. Often, different
subproblems are best solved by different combinatorial optimization techniques. In
such cases, it is advantageous to decompose problems into multiple subproblems
that can be solved in isolation by the best available techniques and then recom-
bined into full solutions. A popular scheme is to decompose a problem into a
master problem whose solution yields one or multiple subproblems. This decompo-
sition is often applied, for example, to resource allocation and scheduling problems,
where resource allocation is defined as the master problem and solved with IP, and
scheduling is defined as the subproblem and solved with CP [100]. Even if the same
technique is applied to all subproblems resulting from a decomposition, solving
can often be improved if the subproblems are independent and can for example be
solved in parallel [47].

Presolving. Presolving methods reformulate constraint models to speed up the
subsequent solving process. Two popular presolving methods in CP are bounding
by relaxation [73] and probing (also known as singleton consistency [36]). Bounding
by relaxation strengthens the constraint model as follows: first, a relaxed version of
the model where some constraints are removed is solved to optimality. Then, the

1Global constraints and dedicated propagation algorithms have been proposed that reason on
all-different and arithmetic constraints in a similar way [15].

22

event x y z

initially {1,2} {1,2} {1,2,3,4,5}
probing for z = 1 {1,2} {1,2} {2,3,4,5}
probing for z = 2 {1,2} {1,2} {3,4,5}
probing for z = 3 {1,2} {1,2} {3,4,5}
probing for z = 4 {1,2} {1,2} {3,5}
probing for z = 5 {1,2} {1,2} {3}

Table 2.3: Effect of probing the variable z before solving.

objective function of the original model is constrained to be worse or equal than
the optimal result of the relaxation. For example, the constraint model from Fig-
ure 2.3 can be solved to optimality straightforwardly if the all-different constraint
is disregarded. This relaxation yields the optimal value of z = 4. After solving the
relaxation, the value 5 can be discarded from the domain of z in the original model
since z cannot be better than 4.

Probing tries individual assignments of values to variables and discards the
values which lead to a failure after propagation. This method is often applied only
in the presolving phase because of its high (yet typically polynomial) computational
cost. Table 2.3 illustrates the effect of applying probing to the variable z in the
running example. Since all assignments of values different to 3 lead to a direct
failure after propagation, they can be discarded from the domain of z.

Portfolios. A portfolio is a meta-solver that runs different solvers on the same
problem in parallel [57]. Portfolios exploit the variability in solving time exhibited
by CP solvers, where different solvers perform best for problems of different sizes
and structure, particularly when the solving methods differ.

If the constraint model to be solved has an objective function, the solvers in-
cluded in the portfolio can cooperate by sharing the cost of the found solutions.
These costs can be used by all solvers to bound their objective function similarly
to branch-and-bound exploration.

23

Chapter 3

Summary of Publications

This chapter gives an extended summary of the publications that underlie the dis-
sertation and relates them to the contributions listed in Section 1.5. Section 3.1
summarizes Publication A, a peer-reviewed journal article that surveys combina-
torial approaches to register allocation and instruction scheduling. Sections 3.2
and 3.3 summarize Publications B and C, two peer-reviewed papers published
in international conferences that contribute program representations, combinato-
rial models, and solving methods for integrated register allocation and instruction
scheduling as well as knowledge gained through experimentation. Section 3.4 sum-
marizes Publication D, a technical report (submitted for publication) that extends
the contributions of Publications B and C with additional model extensions, a more
extensive evaluation including actual execution results, and a study of the accuracy
of the speedup estimation. Section 3.5 summarizes Publication E, a short peer-
reviewed paper published in an international conference that presents Unison, the
implementation of this dissertation’s approach. Section 3.6 clarifies the individual
contributions of the dissertation author.

3.1 Publication A: Survey on Combinatorial Register
Allocation and Instruction Scheduling

Publication A surveys combinatorial approaches to register allocation and instruc-
tion scheduling (see contribution C1 in Section 1.5). The survey contributes a
classification of the approaches and identifies developments, trends, and challenges
in the area. It serves as a complement to available surveys of register alloca-
tion [80,107,112,116,118], instruction scheduling [3,38,60,119,123], and integrated
code generation [85], whose focus tends to be on heuristic approaches.

Combinatorial register allocation. The most prominent combinatorial ap-
proach to register allocation is the optimal register allocation framework [48,59,90].
This approach is based on IP, models the complete set of register allocation sub-

25

problems for entire functions, and demonstrates that in practice register allocation
problems have a manageable average complexity, solving functions of hundreds of
instructions optimally in a time scale of minutes.

An alternative approach is to model and solve register allocation as a parti-
tioned Boolean quadratic programming (PBQP) problem [65, 125]. PBQP is a
combinatorial optimization technique where the constraints are expressed in terms
of costs of individual and pairs of assignments to finite integer variables. Register
allocation can be formulated as a PBQP problem in a natural manner, but the
formulation excludes several subproblems. The PBQP approach can solve most
SPEC2000 functions optimally with a dedicated branch-and-bound solver.

Another IP approach is the progressive register allocation scheme [87,88]. This
approach focuses on delivering acceptable solutions quickly while being able to
improve them if more time is available. Register allocation (excluding coalescing,
register packing, and multi-allocation) is modeled as a network flow IP problem.
The approach uses a custom iterative solver that delivers solutions in a time frame
that is competitive with conventional approaches and generates optimal solutions
for most functions in different benchmarks when additional time is given.

Multiple approaches have been proposed that extend combinatorial register al-
location with processor-specific subproblems (such as stack allocation [108] and
bit-width awareness [12]) and alternative optimization criteria (such as code size
reduction in an embedded processor [106] and worst-case execution time minimiza-
tion for real-time applications [44]). These extensions illustrate the flexibility of
the combinatorial approach as discussed in Chapter 1.

Further scalability with little performance degradation of the generated code
can be attained by decomposing register allocation and focusing in solving only
spilling and its closest subproblems optimally [5, 32, 39]. On the other hand, the
decomposed approach is less effective when the remaining subproblems have a high
impact on the quality of the solution [89].

Despite the demonstrated feasibility of combinatorial register allocation, two
main challenges that prevent a wider adoption remain open: improving the quality
of its generated code and reducing solving time. The former calls for a more accurate
modeling of complex memory hierarchies common in modern processors, while the
latter could be addressed by a more systematic analysis of the employed IP models
or the use of alternative or hybrid combinatorial optimization techniques.

Combinatorial instruction scheduling. Instruction scheduling can be classi-
fied into three levels according to its scope: local, regional, and global.

The early approaches to local instruction scheduling (using IP [7, 98], CP [43],
and special-purpose enumeration techniques [29]) focus on handling highly irregular
processors and do not scale beyond some tens of instructions. In 2000, the semi-
nal IP approach by Wilken et al. [141] demonstrates that basic blocks of hundreds
of instructions can be scheduled optimally with problem-specific solving methods.
Subsequent research [67,136] culminates with the CP approach by Malik et al. [103],

26

which solves optimally basic blocks of up to 2600 instructions for a more realistic
and complex processor than the one used originally by Wilken et al. A particu-
lar line of research in local instruction scheduling is to minimize the register need
of the schedule, which is the typical optimization criterion of the first instruction
scheduling stage in a conventional compiler back-end (see Figure 1.2). Multiple
approaches have been proposed [63,84,101,129] that solve medium-sized problems
optimally and demonstrate moderate code quality improvements over their conven-
tional counterparts.

Regional instruction scheduling operates on multiple basic blocks to extract
more instruction-level parallelism and generate faster code. Its scope can be classi-
fied into three levels: superblocks [76] (consecutive basic blocks with a single entry
and possibly multiple exits), traces [45] (consecutive basic blocks with possibly
multiple entries and exits), and software pipelining [120] (loops where instructions
from multiple iterations are scheduled simultaneously). Combinatorial scheduling
approaches have been proposed at all levels. Superblocks and traces have been
approached with special-purpose enumeration techniques [130, 131] and CP [102].
Extensive work has been devoted to IP-based software pipelining, where the primary
optimization criterion is to minimize the duration of each loop iteration and differ-
ent secondary criteria are proposed, including resource usage minimization [4, 61]
and register need minimization [38,40,62]. A CP approach to loop unrolling, closely
related to software pipelining, has been recently proposed [37].

Global instruction scheduling considers entire functions simultaneously. The
most prominent combinatorial approach to global scheduling is based on IP [144,
145]. The model captures a rich set of of instruction movements across basic blocks
and is analytically shown to result in IP problems that can be solved efficiently.
Experiments show that the approach is indeed feasible for medium-sized functions of
hundreds of instructions. An alternative approach that minimizes register need has
been proposed [11]. The approach uses a hybrid solving scheme that combines IP
with the use of heuristics to scale to functions of up to 1000 instructions. However,
the experiments show that the approach does not have a significant impact on the
execution time of the generated code, possibly due to model inaccuracies.

Open challenges in combinatorial instruction scheduling include: modeling com-
plex, out-of-order processors; improving the scalability of regional and global ap-
proaches; and capturing the impact of high register need more accurately.

Integrated approaches. Integrated, combinatorial approaches can be classified
into those that consider exclusively register allocation and instruction scheduling as
in this dissertation and those that additionally consider instruction selection. The
latter are referred to as fully integrated.

The most prominent approaches within the first category are the IP-based
PROPAN [83]; that of Chang et al. [28]; that of Nagarakatte and Govindara-
jan [105]; and the CP-based Unison, the project that underlies this dissertation.
PROPAN is one of the first combinatorial approaches that integrates register as-

27

signment without spilling and instruction scheduling. A distinguishing feature is its
modeling of resource and register assignment constraints as flow networks. The ap-
proach generates code with significantly shorter makespan than heuristic scheduling
and optimal register assignment in isolation, but it does not seem to scale beyond
small problems of a few tens of instructions. Chang et al. model local instruc-
tion scheduling and spilling including load-store optimization [28]. They show that
modeling spilling in this setup increases solving time by an order of magnitude.
Nagarakatte and Govindarajan model register allocation and spill-code scheduling
in software pipelining [105]. The approach yields a noticeable spill code reduction
over its heuristic counterpart.

Fully integrated combinatorial code generation is pioneered byWilson et al. [142,
143], with a rather complete IP model including global register allocation. Prelimi-
nary experiments indicate that the approach has limited scalability. An alternative
IP approach with a focus on instruction selection is proposed by Gebotys [51].
In this approach, register assignment is decided by selecting different instruction
versions, and instruction scheduling is reduced to bundling already ordered in-
structions. The approach generates significantly better code than a conventional
compiler back-end for basic blocks of around hundred instructions. The first and
only CP-based approach to fully integrated code generation is proposed by Bashford
and Leupers [13]. Unlike the rest of approaches described here, solving is decom-
posed into several stages, sacrificing global optimality in favor of solving speed. The
generated code is as good as hand-optimized code and noticeably better than that
of conventional compiler back-ends, but the scalability remains limited despite the
decomposed solving process. The most recent fully-integrated approach is OPTI-
MIST [41]. OPTIMIST has a rich resource model that captures arbitrarily complex
processor pipelines. The register allocation submodel captures spilling and its clos-
est subproblems only. OPTIMIST explores two scopes: local code generation [42]
and software pipelining [41]. The local approach solves basic blocks of up to around
two hundred instructions optimally, while the software pipelining approach handles
loops of around half that size.

The main challenge for integrated approaches is to scale up to larger problem
sizes while modeling the same subproblems as conventional back-ends. Promising
directions are identifying and exploiting problem decompositions as in this disser-
tation and employing hybrid combinatorial optimization techniques.

3.2 Publication B: Constraint-based Register Allocation
and Instruction Scheduling

Publication B proposes the first advances in combinatorial code generation con-
tributed by this dissertation: a program representation based on linear static single
assignment (LSSA) and copy extension (part of contribution C2), and a first inte-
grated combinatorial model for global register allocation and instruction scheduling
(part of contribution C3). The combination of these elements gives a combinatorial

28

int factorial(int n) {
int f = 1;
while (n > 0) {

f = f * n;
n--;

}
return f;

}

Figure 3.1: Running example: factorial function in C code.

approach that for the first time handles multiple subproblems of register allocation
such as spilling, register assignment, live range splitting, (basic) coalescing, register
packing, and instruction scheduling in integration with instruction scheduling. The
publication also proposes a constraint solving method that exploits the properties
of LSSA to scale up to medium-sized functions (contribution C5). Experiments
demonstrate that the code quality of the constraint-based approach is competitive
with that of state-of-the-art conventional compiler back-ends for a simple processor
(part of contribution C6).

Running example. The iterative implementation of the factorial function, whose
C code is show in Figure 3.1, is used as a running example to illustrate the concepts
in Publications B-E.

Input program representation. Publications B-E take functions after instruc-
tion selection, represented by their control-flow graph (CFG) in static single as-
signment (SSA) form [34,133], as input. This is a common program representation
used, for example, by the LLVM compiler infrastructure [94].

The vertices of the CFG correspond to basic blocks and the arcs correspond
to control transfer across basic blocks. A basic block contains operations (referred
to as instructions in Publication B) that are executed together independently of
the execution path followed by the program. Operations use and define possibly
multiple temporaries. Program points are locations between consecutive operations.
A temporary t is live at a program point if t holds a value that might be used
later by another operation. The live range of a temporary t is the set of program
points where t is live. In the input representation, operations are implemented by
processor instructions (referred to as operations in Publication B). Distinguishing
between operations and instructions enables a compact model of spilling, live range
splitting, and coalescing, as explained below.

SSA is a program form where temporaries are defined exactly once, and φ-
functions are inserted to disambiguate definitions of temporaries that depend on
program control flow [34]. Figure 3.2 shows the CFG of the running example in
SSA after selecting the following instructions of a MIPS-like processor: li (load

29

nb ←
fb ← li 1

ble nb,0, e
nl ← φ (nb,n′l)
fl ← φ (fb,f′l)
f′l ← mul fl ,nl
n′l ← sub nl ,1

bgt n′l ,0, lfe ← φ (fb,f′l)
jr
← fe

b:
l:

e:

Figure 3.2: Factorial function in SSA with processor instructions.

immediate value), ble (jump if lower or equal), mul (multiply), sub (subtract), bgt
(jump if greater), and jr (jump to return address). A temporary t that is local
to a basic block b is represented as tb. The top and bottom operations in basic
blocks b and e are virtual entry and exit operations (called in- and out-delimiters
in Publications B and C) that define and use the input argument nb and return value
fe. The figure illustrates the purpose of φ-functions. For example, the φ-function
in e defines a temporary fe which holds the value of either fb or f′l , depending on
the program control flow.

Linear static single assignment form. The publication proposes the use of
the linear static single assignment (LSSA) form as a program representation to
model register allocation for entire functions. LSSA decomposes temporaries that
are live in different basic blocks into multiple temporaries, one for each basic block.
The temporaries decomposed from the same original temporary are related by a
congruence. Figure 3.3 illustrates the transformation of a simple program to LSSA.
In Figure 3.3a, t1 is a global temporary live in four basic blocks. Its live range
is represented by rectangles to the left of each basic block. In Figure 3.3b, t1
is decomposed into the congruent temporaries {t1, t2, t3, t4}, one per basic block.
Congruent temporaries t, t′ are represented as t ≡ t′.

LSSA has the property that each temporary belongs to a single basic block.
This property is exploited to reduce a global register allocation model to multiple
local register allocation models related by congruences. The structure of LSSA is
also exploited in a problem decomposition that yields a more scalable solver.

LSSA is constructed from SSA by the direct application of a standard liveness
analysis. Virtual entry and exit operations are added to the beginning (end) of each
basic block to define (use) the temporaries that are live on entry (exit). φ-functions
are removed, as they are subsumed by the combination of congruences and entry
and exit operations. Figure 3.4 shows the CFG of the running example in LSSA,
where the arcs are labeled with congruences. In this particular case, all original
SSA temporaries correspond directly to LSSA temporaries since they belong each
to a single basic block.

30

⋮

t1 ←
⋮

⋮ ⋮

⋮

← t1
⋮

(a) before

t1

t2 t3

t4

t1 ≡ t2 t1 ≡ t3

t2 ≡ t4 t3 ≡ t4

⋮

t1 ←
⋮

⋮ ⋮

⋮

← t4
⋮

(b) after

Figure 3.3: LSSA transformation.

nb ←
fb ← li 1

ble nb,0, e
← nb,fb

nl ,fl ←
f′l ← mul fl ,nl
n′l ← sub nl ,1

bgt n′l ,0, l
← f′l ,n

′

lfe ←
jr

← fe

b:
l:

e:

nb ≡ nl
fb ≡ fl

fb ≡ fe

fl ≡ f′l
nl ≡ n′l

fe ≡ f′l

Figure 3.4: Factorial function in LSSA.

Copy extension. The publication proposes copy extension as a program repre-
sentation to model spilling, coalescing, and register bank assignment in a unified
manner. Copy extension extends programs with copy operations (copies for short).
A copy can be implemented by different instructions (such as stores, loads, and
register-to-register moves) to allow its temporaries to be assigned to different types
of locations (such as processor registers or memory), or decided to be inactive.

The particular copy extension strategy depends on the architecture of the pro-
cessor. Programs for load-store processors with a single register bank such as the
MIPS-like processor in the running example are extended by inserting a copy after
each definition of a temporary (implementable by a store or a register-to-register
move instruction) and a copy before each use of a temporary (implementable by a

31

nb ←
fb ← li 1

nb.1 ← {�,move,store}nb
fb.1 ← {�,move,store}fb

ble nb,0, e
← nb.1,fb.1

nl ,fl ←
nl.1 ← {�,move,load}nl
fl.1 ← {�,move,load}fl
f′l ← mul fl.1,nl.1

nl.2 ← {�,move,load}nl
n′l ← sub nl.2,1

f′l.1 ← {�,move,store}f′l
n′l.1 ← {�,move,store}n′l

bgt n′l ,0, l
← f′l.1,n

′

l.1

fe ←
fe.1 ← {�,move,load}fe

jr
← fe.1

b:

l:

e:

nb.1 ≡ nl
fb.1 ≡ fl

fb.1 ≡ fe

fl ≡ f′l.1
nl ≡ n′l.1

fe ≡ f′l.1

Figure 3.5: Factorial function extended with copies.

load or a register-to-register move instruction). Figure 3.5 shows the running ex-
ample in LSSA extended with copies. A copy from t to t′ that can be implemented
by different instructions i1, i2, . . . in is represented as t′ ← {�, i1, i2, . . . in} t, where
� is a special instruction whose selection indicates that the copy is inactive. The
i-th copy of a temporary t in basic block b is represented as tb.i.

Combinatorial model. The publication contributes a combinatorial model of
integrated register allocation and instruction scheduling based on LSSA programs
extended with copies. The model is parameterized with respect to the program and
a processor description.

Register allocation variables determine which instruction implements each op-
eration (where the selection of a special instruction � indicates that an operation
is inactive), and which register is assigned to each temporary. The paper proposes
the concept of a unified register array, which includes processor registers as well
as registers representing memory locations. Using a unified register array enables
a uniform, compact model where the action of spilling a temporary t follows from
assigning t to a memory register. The model includes additional variables to model
the start and end of the live range of each temporary. Register assignment is
reduced to a rectangle packing problem, following the model of Pereira and Pals-
berg [113]. Each temporary t yields a rectangle where the width is proportional
to the number of bits of t and the top and bottom coordinates correspond to the
beginning and end of the live range of t. A valid register assignment corresponds
to a non-overlapping packing of temporary rectangles in a rectangular area, where
the horizontal dimension represents the registers in the unified register array and
the vertical dimension represents time in clock cycles. This structure is captured
with non-overlapping rectangle constraints [14]. Figure 3.6 shows four temporaries

32

R1 R2 R3 R4...
0
1
2
3

cy
cl
e t1

t2

t3 t4

Figure 3.6: Register packing.

with different live ranges and bit-widths packed into registers R1 to R4.
Additionally, the model includes constraints to ensure that: the register to which

temporary t is assigned is compatible with the instructions that define and use t, the
temporaries defined and used by inactive copies are assigned to the same register
(capturing basic coalescing), and congruent temporaries in different basic blocks
are assigned the same register.

Instruction scheduling variables determine the cycle in which each operation is
issued. The model includes dependency constraints to enforce the partial ordering
among instructions imposed by data and control flow, and resource constraints [2]
to ensure that the capacity of processor resources such as functional units is not ex-
ceeded. This standard scheduling structure captures bundling for VLIW processors
since it allows multiple operations to be issued in the same cycle.

Publication B’s objective is to minimize execution cycles. The objective function
is a sum of the makespan (last issue cycle) of each basic block b weighted by the
estimated execution frequency of b.

Model limitations. The combinatorial model in Publication B has two signifi-
cant limitations despite capturing a wide array of subproblems. The first limitation
is usually referred to as spill-everywhere: a temporary t spilled to memory must be
loaded into a register as many times as it is used, even in the extreme case where
the user operations are bundled together. The second limitation is that of basic co-
alescing: temporaries that hold the same value and are live simultaneously cannot
be coalesced. Program representations and combinatorial models that overcome
these limitations are the main subject of Publication C.

Decomposition-based solver. The publication proposes a CP solver that ex-
ploits the properties of LSSA to decompose the problem and improve scalability.
The decomposition scheme proceeds as follows: first, a global problem is solved
by assigning registers to the temporaries that are related across basic blocks by
congruences. Then, the remaining problem can be decomposed into a local prob-
lem per basic block, since the rest of variables and constraints correspond to local
decisions. The local problems are solved independently for each basic block b by as-
signing values to the remaining variables such that the makespan of b is minimized.
The global and local solutions are combined into a full solution that corresponds to

33

an assembly function. The process is repeated by constraining the cost to be less
than that of the newly found assembly function, until the solver proves optimality
or times out.

Experimental results. The quality of the generated code and the solving time
are evaluated experimentally with MIPS [134] as a simple processor and functions
from the C program bzip2 as a representative of the SPEC CPU2006 benchmark
suite. The functions are taken after optimization and instruction selection using
LLVM 3.0. The results show that the code quality is competitive with that of the
code generated by LLVM and that, due to the decomposition scheme and the use
of timeouts, the solving time grows polynomially with the number of operations.

3.3 Publication C: Combinatorial Spill Code Optimization
and Ultimate Coalescing

Publication C proposes a novel program representation called alternative tempo-
raries (part of contribution C2) that addresses the limitations of the combinatorial
model in Publication B. This representation enables the incorporation of load-store
optimization (referred to as spill code optimization in Publication C) and a refined
form of coalescing (ultimate coalescing) in a combinatorial model of integrated
register allocation and instruction scheduling. Load-store optimization removes
unnecessary memory access instructions inserted during register allocation while
ultimate coalescing removes unnecessary register-to-register copy instructions.

For the first time, a combinatorial model is proposed that captures the major-
ity of subproblems of global register allocation and instruction scheduling (part of
contribution C3). Furthermore, the publication extends the constraint-based ap-
proach in Publication B with a presolving phase that is empirically demonstrated
to be essential for solving efficiency. Experiments (part of contribution C6) show
that the new approach: yields faster code than Publication B’s approach and state-
of-the-art conventional back-ends for a VLIW processor, preserves the scalability
demonstrated in Publication B despite the increased solution space and processor
complexity, and adapts to different optimization criteria easily.

Program representation. The publication starts with functions in LSSA form
extended with copies as proposed by Publication B. This representation imposes
two limitations to the corresponding combinatorial model: spill-everywhere and
basic coalescing. In a spill-everywhere model, a load instruction is inserted as
many times as a spilled temporary is used, even in the extreme case where the
user operations are bundled together. This is illustrated in Figure 3.7a, where two
instructions are inserted to load the temporary t2 which is the result of spilling t1.
Basic coalescing cannot coalesce temporaries that hold the same value if their live
ranges overlap. This is illustrated in Figure 3.7b, where both temporaries t1 and t2

34

t1 ←
t2 ← store t1
⋯

t3 ← load t2
← t3

t4 ← load t2
← t4

(a) spill-everywhere

t1 ←
⋯

t2 ← move t1
⋯

← t1
⋯

← t2

(b) basic coalescing

Figure 3.7: Limitations of the program representation in Publication B.

t1 ←
t2 ← store t1
⋯

t3 ← load t2
← t3

t4 ← load t2
← {t3, t4}

(a) load-store optimization

t1 ←
⋯

t2 ← move t1
⋯

← t1
⋯

← {t1, t2}

(b) ultimate coalescing

Figure 3.8: Alternative temporaries to overcome limitations in Figure 3.7.

are live after the definition of t2 and thus cannot be coalesced by basic coalescing,
even though they hold the same value.

A key observation in Publication C is that both limitations stem from the im-
possibility of substituting temporaries in the program as optimization decisions are
taken, as conventional approaches do. For example, in Figure 3.7a, substituting t3
for t4 in the last instruction would permit removing the second load instruction as
in load-store optimization. Similarly, in Figure 3.7b, substituting t1 for t2 in the
last instruction would permit removing the register-to-register move instruction as
in ultimate coalescing.

Alternative temporaries. The publication proposes alternative temporaries as
a program representation to replace spill-everywhere by load-store optimization and
basic by ultimate coalescing in combinatorial code generation. This is achieved by
letting operations use or define (connect to) alternative temporaries as long as these
hold the same value, instead of fixing which operation uses which temporary before
solving. This enables the substitution of temporaries during solving and thus allows
the model to capture load-store optimization and ultimate coalescing.

Figure 3.8 shows the alternative temporaries necessary to enable load-store op-
timization and ultimate coalescing in the examples from Figure 3.7. If the last

35

p1 ∶nb ←
fb ← li 1

{�,nb.1} ← {�,move,store}{�,nb}
{�,fb.1} ← {�,move,store}{�,fb}

ble {nb,nb.1},0, e
← p2 ∶{nb,nb.1}, p3 ∶{fb,fb.1}

p4 ∶nl , p5 ∶fl ←
{�,nl.1} ← {�,move,load}{�,nl}
{�,fl.1} ← {�,move,load}{�,fl}

f′l ← mul {fl ,fl.1},{nl ,nl.1,nl.2}
{�,nl.2} ← {�,move,load}{�,nl}

n′l ← sub {nl ,nl.1,nl.2},1
{�,f′l.1} ← {�,move,store}{�,f′l }
{�,n′l.1} ← {�,move,store}{�,n′l}

bgt {n′l ,n
′

l.1},0, l
← p6 ∶{f′l ,f

′

l.1}, p7 ∶{n′l ,n
′

l.1}
p8 ∶fe ←

{�,fe.1} ← {�,move,load}{�,fe}
jr
← p9 ∶{fe,fe.1}

b: l:

e:

p2 ≡ p4
p3 ≡ p5

p3 ≡ p8

p5 ≡ p6
p4 ≡ p7

p8 ≡ p6

Figure 3.9: Factorial function augmented with alternative temporaries.

instruction in Figure 3.8a is connected to t3, load-store optimization can be per-
formed by making the last load instruction inactive. If the last instruction in
Figure 3.8b is connected to t1, ultimate coalescing can be performed by making
the move instruction inactive. Temporary substitution also allows the model to
capture the simultaneous allocation of temporaries to registers and memory (multi-
allocation), which can improve the resulting code in certain scenarios [32].

A program is augmented with alternative temporaries in two main steps. First,
each occurrence of a temporary t in the program is replaced by a set of alternative
temporaries that hold the same value as t. Then, the program is simplified by
discarding alternatives that can potentially lead to invalid or redundant solutions.
Figure 3.9 shows the running example augmented with alternative temporaries.
A set of alternative temporaries t1, t2, . . . tn that can be connected to an opera-
tion is represented as {�, t1, t2, . . . tn}, where � indicates that the operation is not
connected to any temporary. The sets of alternative temporaries that can be con-
nected to the entry and exit operations are named as p1, p2, . . . , p9 and related by
congruences as shown in the labels of the CFG arcs.

Combinatorial model. Publication C augments the combinatorial model from
Publication B to exploit alternative temporaries for load-store optimization and ul-
timate coalescing. The main change in the model is the addition of a new dimension
of variables that determine which temporaries are connected to each operation.

Constraints are added to make copies active if and only if their defined tempo-
raries are used, and to connect active copies to temporaries. Temporaries that are
not used by any operation are considered dead. These changes obviate the dedi-
cated coalescing constraints from Publication B: in the new model, two temporaries
are coalesced by simply using one of them and discarding the other.

36

R1 R2...
nb ←

fb ← li 1 ∣∣ ble nb, 0, e
← nb, fb

t1
t2

R1 R2...
nl , fl ←
f′l ← mul fl , nl ∣∣ n′l ← sub nl , 1
bgt n′l , 0, l
← f′l , n′l

t5 t6

t9t11

R1 R2...
fe ←

fe.1 ← move fe ∣∣ jr

← fe.1

t14

t15

nb ≡ nl
fb ≡ fl

nb ≡ fe

f′l ≡ fl
n′l ≡ nl

fe ≡ f′l

Figure 3.10: Optimal solution for the factorial function.

b: li R2, 1 || ble R1, 0, e
l: mul R2, R2, R1 || sub R1, R1, 1

bgt R1, 0, l
e: move R1, R2 || jr

Figure 3.11: Optimal VLIW MIPS-like code for the factorial function.

The dependency constraints are revisited to account for the fact that the data
flow is variable, as it depends on the connections between operations and tempo-
raries.

The objective function is generalized to model different optimization criteria.
The new objective function is a weighted sum of the local cost of each basic block.
The weight and cost function of each basic block can be adjusted to optimize for
different criteria such as speed, code size, or energy consumption.

Figure 3.10 depicts the optimal solution for the running example, both in terms
of speed and code size. The solution assumes a VLIW processor (where bundled
instructions i, i′ are represented as i ∣∣ i′) and a calling convention that assigns the
input argument (nb) and the return value (fe.1) to register R1. Under such con-
straints, a register-to-register move instruction is required to move the computed
factorial value stored in R2 to the return register R1. Reasoning about register
allocation and instruction scheduling in integration yields the optimal decision to
bundle the move instruction together with the jump instruction jr in basic block e.
The final MIPS-like assembly code derived from the optimal solution to the com-
binatorial problem is shown in Figure 3.11.

Model limitations. The combinatorial model augmented with alternative tem-
poraries overcomes the limitations highlighted in Publication B. However, the ap-
proach presents other limitations which also apply to Publication B and most previ-
ous work: the model does not handle variable, uncertain instruction latencies (due

37

to, for example, cache memories); the scope of scheduling is limited to basic blocks;
and rematerialization is not captured. The lack of rematerialization is addressed
by Publication D.

Presolving. The publication extends the decomposition-based scheme of Publi-
cation B with presolving techniques. The main idea of presolving is to reformulate
combinatorial problems to boost the efficiency of the solving process. A particularly
effective presolving technique is that of connection nogoods. This technique derives
invalid combinations of connections (nogoods) that are exploited by the solver to
guide the search process effectively. The nogoods are derived by analyzing a connec-
tion graph, which represents operations, temporaries, registers, and their potential
connections. Paths between nodes that cannot be assigned the same register yield
connection nogoods.

Experimental results. The publication includes an experimental evaluation of
different characteristics of the approach: code quality, impact of alternative tempo-
raries and presolving techniques, scalability and runtime behavior, and impact of
different optimization criteria. The experiments use Hexagon [31] as a VLIW digital
signal processor and medium-sized functions sampled from the MediaBench bench-
mark suite. The functions are taken after optimization and instruction selection
using LLVM 3.3.

The results show that the combinatorial approach generates code estimated to
be faster than that of LLVM (up to 41%, with a mean speedup of 7%), and possibly
optimal code (for 29% of the functions). The improvement is partially due to the
introduction of alternative temporaries, which yield a mean speedup of 2% over the
model from Publication B.

Presolving is empirically demonstrated to be essential for solving: without it,
Unison cannot generate any solution for 11% of the functions and the speedup
over LLVM decreases considerably. The experiments show that the combinatorial
model can be easily adjusted to optimize for code size reduction, although the
mean improvement over LLVM in this case is of only 1%. Last, a surprising result
from a combinatorial optimization perspective is that the scalability of the solver
introduced in Publication B is preserved despite the increased solution space and
higher processor complexity.

3.4 Publication D: Combinatorial Register Allocation and
Instruction Scheduling

Publication D consolidates and extends the contributions of the dissertation to
make the approach practical. The program representation (contribution C2) and
combinatorial model (contribution C3) are extended with support for rematerial-
ization. This gives a combinatorial approach that, for the first time, models the
complete set of register allocation subproblems handled by conventional compiler

38

back-ends, which is essential for practical purposes (see Section 1.1). Besides re-
materialization, Publication D contributes model extensions to capture additional,
interdependent subproblems (referred to as program transformations in the pub-
lication) that are usually approached in isolation by conventional compilers. The
extensions (corresponding to contribution C4) illustrate the ease with which the
approach can be adapted to specific processor features such as operand forwarding,
two- and three-address instructions, or double load and store instructions.

A second condition for being practical is to scale up to at least medium-sized
problems. An extensive evaluation (part of contribution C6) using two benchmark
suites (MediaBench and SPEC CPU2006) and three different processors (Hexagon,
ARM, and MIPS) shows that the approach scales up to medium-sized functions
of up to 1000 instructions. Furthermore, the approach is shown to be effective in
that the quality of its generated code is slightly to significantly better than that of
LLVM, depending on the targeted processor.

The third condition for being practical is to generate executable code. Publica-
tion D reports the first evaluation of actual speedup for a combinatorial, integrated
approach. The results show that the estimated speedup for MediaBench appli-
cations on Hexagon indeed results in actual, significant speedup. A study of the
accuracy of the speedup estimation (contribution C7) determines that it has a
strong monotonic relationship to the actual speedup, and identifies dynamic pro-
cessor behavior (caused by features such as cache memories and branch prediction)
as the main source of inaccuracy.

Program representation. The publication uses a variation of Publication C’s
program representation. The representation differs in two ways: copy extension
is adjusted to accommodate the rematerialization subproblem and special null in-
structions and temporaries (�) are omitted for simplicity. For consistency, examples
in this section do use such instructions and temporaries.

Rematerialization extension. The publication captures rematerialization by
an adjustment of copy extension and the unified register array (see Section 3.2) that
does not require any changes to the model itself. Rematerialization is restricted to
never-killed values [27] that can be recomputed by a single instruction at any point
of the function, as is common in combinatorial register allocation.

The key idea of the extension is to model the rematerialization of a temporary t
as if t were defined in a special register with zero cost and then loaded into a
processor register by a copy instruction corresponding to t’s actual definer. This is
achieved by extending the register array with a special register class and adjusting
the copy extension of each rematerializable temporary t to include: 1) a zero-cost
instruction remat as an alternative to t’s original definer, and 2) the original definer
instruction as an alternative copy instruction before each use of t. Rematerializable
temporaries are identified using data-flow analysis [19].

Figure 3.12 illustrates how rematerialization is captured. Figure 3.12a shows a

39

t1 ← li ⋯

⋯

⋯ ← t1

⋯ ← t1

(a) before extension

t1 ← {li,remat}⋯
{�, t2} ← {�,move,store}{�, t1}

⋯

{�, t3} ← {�,move,load,li}{�, t1, t2}
← {t1, t2, t3, t4}

{�, t4} ← {�,move,load,li}{�, t1, t2}
← {t1, t2, t3, t4}

(b) after extension

t1 ← remat ⋯

⋯

t3 ← li t1
← t3

t4 ← li t1
← t4

(c) rematerialization

Figure 3.12: Rematerialization extension.

rematerializable temporary t1 that is defined by instruction li and used twice. Fig-
ure 3.12b shows the result of copy and rematerialization extension, where instruc-
tion remat is introduced as an alternative to the original definition and instruction
li is introduced as an alternative to the copy instructions placed before each use.
Finally, Figure 3.12c shows the result of rematerialization in a potential solution,
where the generated code excludes the remat instruction as well as temporary t1.

Combinatorial model. The publication uses the model introduced by Publica-
tion C, adjusted to the variations in the program representation. Unlike Publica-
tions B and C, the publication presents the model incrementally, from local register
allocation to the complete integrated model.

Model extensions. The publication introduces model extensions to capture the
following additional subproblems:

• frame optimization avoids generating a stack frame under certain conditions;

• scheduling with latencies across basic blocks takes into account the global
effect of long-latency instructions;

• scheduling with operand forwarding exploits instructions that can access values
in the same cycle as they are defined;

• selection of two- and three-address instructions exploits instructions with a
simpler encoding to reduce code size; and

• selection of double load and store instructions exploits instructions that access
two consecutive memory addresses.

Most of the model extensions address specific processor features. For example,
double load and store instructions are rather specific to ARM v5TE and later
versions. The extensions show the ease with which these features can be captured
in a compositional manner. Furthermore, solving these subproblems in integration

40

criterion Hexagon MIPS ARM
speedup (estimated) 9.3% 5.1% 1%
code size reduction 0.8% 3.9% 2.4%

Table 3.1: Mean code quality improvement over LLVM.

with register allocation and instruction scheduling potentially improves code quality
as the subproblems are all interdependent.

Code quality and scalability results. The publication includes an extensive
evaluation of code quality and scalability. The evaluation uses systematically se-
lected functions from MediaBench and SPEC CPU2006 and targets the Hexagon,
ARM, and MIPS processors. LLVM 3.8 is used as a representative of a state-of-
the-art conventional approach and as a code quality baseline for the solver. A
combination of a hybrid CP-SAT solver [30] and the decomposition-based solver
introduced in Publication B and improved in Publication C is used for solving.

Table 3.1 lists the mean code quality improvement results over LLVM. The re-
sults show that the quality of the generated code is slightly to significantly better
than that of LLVM, depending on the optimization criterion (referred to as goal in
Publication D) and targeted processor. The publication reports the first evaluation
of actual speedup for a combinatorial, integrated approach. The evaluation is per-
formed by executing entire MediaBench applications on Hexagon, the processor for
which the combinatorial approach achieves the highest estimated speedup. The re-
sults show that the approach achieves a mean speedup of 7.1% across MediaBench
functions and 5.4% across entire MediaBench applications.

The experiments show that the approach scales to medium-sized functions. De-
pending on the targeted processor, functions of up to 647 instructions are solved
optimally and functions of up to 874 instructions are improved in tens to hundreds
of seconds. Additionally, the results show that: the targeted processor has a sig-
nificant impact on the scalability of the approach, the use of a solver combination
and improving solving methods (including presolving as in Publication C) is key to
scalability, and the scalability can be further improved by relaxing the optimality
requirement while preserving certain code quality guarantees.

Accuracy of the speedup estimation. The publication contributes a study
of the accuracy of the speedup estimation used to guide the optimization process.
The study is based on the execution of MediaBench functions on Hexagon. The
results show that the estimation suffers from inaccuracies but is monotonically
related to the actual speedup, in that higher estimated speedup often leads to
higher actual speedup. This property is key to the combinatorial approach as it
motivates investing time into the optimization process. The inaccuracies are mainly
attributed to the dynamic behavior of Hexagon, caused by features such as cache

41

memories and branch prediction. Such features lead to an overestimation of the
actual speedup for 59% of the functions where there is an estimation error.

3.5 Publication E: Register Allocation and Instruction
Scheduling in Unison

Publication E is a short paper that presents Unison [26], the open-source soft-
ware tool that implements this dissertation’s approach (contribution C8). Unison
complements LLVM and is applied both in industry [140] and in further research
projects [82, 86]. The publication is accompanied by a tool demonstration that is
available online [23].

Besides outlining the main ideas behind Unison (contributed by Publications B-
D), the publication describes the interface to LLVM’s compiler back-end, the avail-
able solvers, and the supported processors. More information about Unison is
provided in the user manual [25].

3.6 Individual Contributions

The main part of the work in Publication A (including most of the search, classi-
fication, synthesis, review, discussion with the reviewers, and actual writing) has
been carried out by the dissertation author.

The main ideas behind Publications B-E have been conceived by the author
and refined in discussions with others, except part of the presolving techniques and
solving improvements described in Publications C and D which have been conceived
by others. The study of Unison’s speedup accuracy in Publication D is based on
preliminary work in a master’s thesis [114] supervised by the dissertation author.

The implementation of Unison and the design, implementation, and analysis of
the experiments are mainly due to the author. An exception is the implementation
of the presolver, the experimental study of the impact of alternative temporaries in
Publication C, and the detailed analysis of Unison’s code quality in Publication D
(Section 11.2).

The dissertation author is the main writer of all publications and has produced
most of their figures.

42

Chapter 4

Conclusion and Future Work

Combinatorial approaches to register allocation and instruction scheduling can be
readily adapted to new processor features and optimization criteria, and have the
potential to generate optimal code. However, delivering on this promise involves
addressing three main challenges identified in a literature survey: modeling all
subproblems handled by conventional compilers, scaling beyond small problems,
and generating executable code.

This dissertation has addressed these challenges through a novel use of con-
straint programming, delivering an integrated approach to register allocation and
instruction scheduling that for the first time is practical and effective. The use of
constraint programming on a dedicated program representation enables a compact
model that captures the complete set of global register allocation subproblems in in-
tegration with instruction scheduling. The model has been extended with additional
subproblems beyond the usual scope of conventional compilers. These subproblem
extensions illustrate the ease with which the approach can be adapted to specific
processor features such as operand forwarding or double load instructions.

The approach has been evaluated empirically through its implementation Uni-
son, an open-source tool that applies general and problem-specific constraint solv-
ing methods. Extensive experiments for different processors, benchmark suites,
and optimization criteria show that the constraint-based approach is practical (in
that it results in a complete model, scales to medium-sized functions, and gener-
ates executable code) and effective (in that it yields better code than conventional
approaches in a wide range of scenarios).

The contributions of this dissertation are significant: they enable the construc-
tion of compiler back-ends that are more flexible and effective than the state of the
art with less development and maintenance effort.

43

4.1 Applications

Improving code quality. The most direct application is to trade compilation
time for code quality beyond the usual compiler optimization levels. This applica-
tion is most suitable for environments where high-quality code is required and longer
compilation times are tolerable. An example is the area of embedded systems,
where the code quality requirements are often demanding, and deployed programs
might be executed during long periods of time without being updated [81]. Another
potential application area is in the compilation of release versions of high-quality
libraries.

Compiling for irregular processors. Another application of the constraint-
based approach is to generate high-quality code for processors with irregular fea-
tures such as clustering [46] and register pairing [19]. Conventional approaches are
hard to adapt to such irregular processors and often yield code of unsatisfactory
quality [99]. As a consequence, critical software components in irregular processors
are often programmed in assembly code, which is unproductive, non-portable, and
error-prone. The flexible nature of this dissertation’s approach makes it a natural
alternative to conventional compiler back-ends for handling processor irregularities.

Improving heuristic algorithms. The constraint-based approach can be used
to compare and assess the effectiveness of different heuristic algorithms for register
allocation and instruction scheduling, exploiting the fact that it delivers optimal
solutions to these problems [140]. Furthermore, close examination of the generated
code can reveal improvement opportunities in these algorithms [24].

Exploring new processor features. Yet another application is to guide pro-
cessor design by exploring the potential benefit of alternative processor features.
This exploration is enabled by the ease with which the constraint-based approach
captures and exploits processor-specific features, as demonstrated in Publication D.
Examples include the exploration of pipeline enhancements, register bank additions,
instruction encoding alternatives, and their trade-offs.

4.2 Future Work

Model extensions. A limitation of the model is the local scope of instruction
scheduling. This limitation affects VLIW processors in particular by restraining
the amount of instruction-level parallelism that they can exploit [45]. As Publica-
tion A shows, there exist combinatorial approaches for different scopes of instruc-
tion scheduling, including local, superblock [76], trace [45], and global scheduling,
as well as software pipelining [120]. The ideas underlying these approaches could
be incorporated into the model. A first step could be to follow the superblock

44

approach proposed by Malik et al. [102]. The key question is whether the scope of
instruction scheduling can be extended without sacrificing scalability severely.

Another limitation of the model is the lack of support for global multi-allocation:
at basic block boundaries, each temporary in the input program can only be allo-
cated to either a register or memory, but not both. This limitation is shared with
most combinatorial register allocation approaches and with the only integrated ap-
proach that captures global register allocation, as discussed in Publication D. The
impact of global multi-allocation on scalability and code quality is unclear.

Model accuracy. The actual speedup delivered by the constraint-based approach
can be improved by addressing the model inaccuracies discussed in Publication D.
Since the inaccuracies are mostly due to the dynamic behavior of the processor,
this line of future work involves identifying the responsible processor features and
capturing their effect in a cost model.

A processor feature that potentially affects accuracy is the use of cache memo-
ries. This feature leads to instruction latencies which are unknown at compilation
time. Instruction scheduling usually assumes the best case for such latencies and
relies on hardware mechanisms such as pipeline blocking to handle worse cases [60].
This assumption underestimates the contribution of unknown latencies to the ob-
jective function. A potential direction to handle uncertain latencies is to explore
the combination of stochastic optimization with cache analysis techniques.

As discussed in Section 1.1, this dissertation is concerned with in-order proces-
sors. A greater challenge is to devise accurate cost models for out-of-order proces-
sors such as x86 [78]. Such cost models could be inferred with machine learning
techniques, or analytically derived from performance analysis tools like the LLVM
Machine Code Analyzer [1]. Supporting x86 in Unison is an ongoing effort [21].

Finally, inaccuracies due to dynamic program behavior can be addressed by
refining the execution frequency estimation that is taken by the approach as in-
put. Profile-guided optimization can be applied to those functions whose execution
frequencies cannot be accurately estimated. An interesting question is whether
the constraint-based approach benefits to a larger extent from improved execution
frequency accuracy compared to conventional compilers.

Scalability. Another potential direction is speeding up solving and improving
scalability beyond medium-sized problems. Several steps in this direction remain
unexplored. A number of advanced solving methods remain to be investigated,
including the use of a Benders decomposition [74], restarts [135], and scheduling-
specific methods [10].

Hybridization of combinatorial optimization techniques is a promising area,
since different techniques tend to have complementary strengths. For example,
hybrid integer and constraint programming techniques tend to perform better than
each of the techniques in isolation for a wide range of resource allocation and
scheduling problems [100]. Other techniques that could be hybridized with the

45

current approach are approximation algorithms [33] to obtain reasonable solutions
with polynomial time guarantees, and large neighborhood search [128].

Alternative optimization criteria. One of the main advantages of the com-
binatorial approach is the ease with which different optimization criteria can be
handled, as seen in Publication A. This dissertation focuses on speed and code
size optimization, but the model’s objective function could be adapted to other
criteria by adjusting its parameters. Examples of alternative optimization criteria
are power consumption [8, 95], temperature [75], worst-case execution time [44],
diversity [93], and debuggability.

An exciting opportunity for combinatorial code generation is to optimize for
multiple criteria simultaneously [104]. Preliminary experiments suggest the feasi-
bility of a priori optimization of speed and code size, where the preference among
these criteria is established in advance. Studying the feasibility of a posteriori
methods (which compute a set of non-dominated optimal solutions to be ranked by
the user) is part of future work.

Open code generation. The flexibility offered by the combinatorial approach
can be exploited to give compiler users a higher degree of control over the gener-
ated code. An interesting research direction is to study how to handle fine-grained
requirements (such as the maximum makespan of a specific basic block) and pref-
erences (such as different optimization criteria for different regions of the same
function). These requirements and preferences could be derived from user annota-
tions in the source code. The challenge is to devise an approach that handles such
a degree of openness while remaining scalable.

Verified compilation. The last decade has seen a growing interest in formally
verified compilers such as CompCert [97]. These compilers are useful for formal
verification, as they guarantee that properties proven in source programs hold in
their corresponding assembly code.

This dissertation’s approach could be used as a basis for a verified compiler
back-end that is simpler yet more effective than current verified approaches. As
the constraint-based approach is already based on a formal combinatorial model,
the verification task is mostly reduced to proving that the transformation to the
program representation preserves the semantics of the input program.

Instruction selection. Instruction selection forms, together with register allo-
cation and instruction scheduling, the core of a compiler back-end. As the three
problems are hard and strongly interdependent, one of the grand challenges in
combinatorial code generation is to capture and solve them in integration [85].

The model proposed in this dissertation captures only a basic version of in-
struction selection where alternative instructions can be selected to implement each

46

operation. A complete combinatorial model of instruction selection is available else-
where together with a discussion of how the models could be integrated [72]. The
main challenge lies in devising modeling and solving improvements to handle the
immensity of the resulting solution space.

47

Bibliography

[1] LLVM Machine Code Analyzer. https://llvm.org/docs/CommandGuide/
llvm-mca.html, 2018.

[2] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to
solve complex scheduling and placement problems. Mathematical and Com-
puter Modelling, 17(7):57–73, 1993.

[3] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Soft-
ware pipelining. ACM Computing Surveys, 27(3):367–432, September 1995.

[4] Erik R. Altman, R. Govindarajan, and Guang R. Gao. Scheduling and map-
ping: Software pipelining in the presence of structural hazards. In Program-
ming Language Design and Implementation, pages 139–150. ACM, 1995.

[5] Andrew W. Appel and Lal George. Optimal spilling for CISC machines with
few registers. In Programming Language Design and Implementation, pages
243–253. ACM, 2001.

[6] ARM Ltd. ARM1156T2F-S Technical Reference Manual, 2007. Rev. r0p4.

[7] Siamak Arya. An optimal instruction-scheduling model for a class of vector
processors. IEEE Transactions on Computers, C-34(11):981–995, Nov 1985.

[8] José L. Ayala, Alexander Veidenbaum, and Marisa López-Vallejo. Power-
aware compilation for register file energy reduction. International Journal of
Parallel Programming, 31(6):451–467, December 2003.

[9] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based
Scheduling. Kluwer, 2001.

[10] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based
scheduling and planning. In Rossi et al. [124], chapter 22, pages 759–797.

[11] Gergö Barany and Andreas Krall. Optimal and heuristic global code motion
for minimal spilling. In Compiler Construction, volume 7791 of Lecture Notes
in Computer Science, pages 21–40. Springer, 2013.

49

https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html

[12] Rajkishore Barik, Christian Grothoff, Rahul Gupta, Vinayaka Pandit, and
Raghavendra Udupa. Optimal bitwise register allocation using integer linear
programming. In Languages and Compilers for Parallel Computing, pages
267–282. Springer, 2007.

[13] Steven Bashford and Rainer Leupers. Phase-coupled mapping of data flow
graphs to irregular data paths. Design Automation for Embedded Systems, 4:
119–165, March 1999.

[14] Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique
applied to the non-overlapping rectangles constraint. In Principles and Prac-
tice of Constraint Programming, volume 2239 of Lecture Notes in Computer
Science, pages 377–391. Springer, 2001.

[15] Nicolas Beldiceanu, Mats Carlsson, Thierry Petit, and Jean-Charles Régin.
An O(n logn) bound consistency algorithm for the conjunction of an alld-
ifferent and an inequality between a sum of variables and a constant, and
its generalization. In European Conference on Artificial Intelligence, pages
145–150. IOS Press, 2012.

[16] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global con-
straint catalog. Technical report, Swedish Institute of Computer Science,
2005.

[17] Christian Bessiere. Constraint propagation. In Rossi et al. [124], chapter 3,
pages 29–83.

[18] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello. Reg-
ister allocation: What does the NP-completeness proof of Chaitin et al. re-
ally prove? or revisiting register allocation: Why and how. In Languages and
Compilers for Parallel Computing, volume 4382 of Lecture Notes in Computer
Science, pages 283–298. Springer, 2007.

[19] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In
Programming Language Design and Implementation, pages 311–321. ACM,
1992.

[20] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph
coloring register allocation. ACM Transactions on Programming Languages
and Systems, 16:428–455, 1994.

[21] Mats Carlsson and Roberto Castañeda Lozano. Unison’s source code: x86
fork, 2018. URL https://github.com/matsc-at-sics-se/unison.

[22] Roberto Castañeda Lozano. Integrated register allocation and instruction
scheduling with constraint programming. Licentiate thesis. KTH Royal Insti-
tute of Technology, Sweden, 2014.

50

https://github.com/matsc-at-sics-se/unison

[23] Roberto Castañeda Lozano. Tool demonstration: Register allocation and in-
struction scheduling in Unison, 2016. URL https://youtu.be/t4g2AjSfMX8.

[24] Roberto Castañeda Lozano. Register allocation and instruction scheduling in
Unison, 2017. URL https://youtu.be/kx64V74Mba0.

[25] Roberto Castañeda Lozano. The Unison manual, 2017. URL https:
//unison-code.github.io/doc/manual.pdf.

[26] Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Chris-
tian Schulte. Unison website, 2018. URL https://unison-code.github.io.

[27] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. Register allocation via coloring.
Computer Languages, 6(1):47–57, 1981.

[28] Chia-Ming Chang, Chien-Ming Chen, and Chung-Ta King. Using inte-
ger linear programming for instruction scheduling and register allocation in
multi-issue processors. Computers & Mathematics with Applications, 34:1–14,
November 1997.

[29] Hong-Chich Chou and Chung-Ping Chung. An optimal instruction scheduler
for superscalar processor. IEEE Transactions on Parallel and Distributed
Systems, 6:303–313, March 1995.

[30] Geoffrey G. Chu. Improving combinatorial optimization. PhD thesis, The
University of Melbourne, Australia, 2011.

[31] Lucian Codrescu, Willie Anderson, Suresh Venkumanhanti, Mao Zeng, Erich
Plondke, Chris Koob, Ajay Ingle, Charles Tabony, and Rick Maule. Hexagon
DSP: An architecture optimized for mobile multimedia and communications.
IEEE Micro, 34(2):34–43, March 2014.

[32] Quentin Colombet, Florian Brandner, and Alain Darte. Studying optimal
spilling in the light of SSA. ACM Transactions on Architecture and Code
Optimization, 11(4):1–26, January 2015.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, third edition, 2009.

[34] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the
control dependence graph. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, October 1991.

[35] George B. Dantzig and Philip Wolfe. Decomposition principle for linear pro-
grams. Operations Research, 8(1):101–111, 1960.

51

https://youtu.be/t4g2AjSfMX8
https://youtu.be/kx64V74Mba0
https://unison-code.github.io/doc/manual.pdf
https://unison-code.github.io/doc/manual.pdf
https://unison-code.github.io

[36] Romuald Debruyne and Christian Bessiere. Some practicable filtering tech-
niques for the constraint satisfaction problem. In International Joint Confer-
ence on Artificial Intelligence, pages 412–417. Morgan Kaufmann, 1997.

[37] Łukasz Domagała, Duco van Amstel, Fabrice Rastello, and P. Sadayappan.
Register allocation and promotion through combined instruction scheduling
and loop unrolling. In Compiler Construction, pages 143–151. ACM, 2016.

[38] Benoît Dupont de Dinechin. From machine scheduling to VLIW instruction
scheduling. ST Journal of Research, 1(2), Sep 2004.

[39] Dietmar Ebner, Bernhard Scholz, and Andreas Krall. Progressive spill code
placement. In Compilers, Architecture, and Synthesis for Embedded Systems,
pages 77–86. ACM, 2009.

[40] Alexandre E. Eichenberger, Edward S. Davidson, and Santosh G. Abraham.
Optimum modulo schedules for minimum register requirements. In Interna-
tional Conference on Supercomputing, pages 31–40. ACM, 1995.

[41] Mattias Eriksson and Christoph Kessler. Integrated code generation for
loops. ACM Transactions on Embedded Computing Systems, 11S(1):1–24,
June 2012.

[42] Mattias Eriksson, Oskar Skoog, and Christoph Kessler. Optimal vs. heuristic
integrated code generation for clustered VLIW architectures. In Software and
Compilers for Embedded Systems, pages 11–20. ACM, 2008.

[43] Anton Ertl and Andreas Krall. Optimal instruction scheduling using con-
straint logic programming. In Programming Language Implementation and
Logic Programming, volume 528 of Lecture Notes in Computer Science, pages
75–86. Springer, 1991.

[44] Heiko Falk, Norman Schmitz, and Florian Schmoll. WCET-aware register
allocation based on integer-linear programming. In Euromicro Conference on
Real-Time Systems, pages 13–22. IEEE, 2011.

[45] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Computers, 30(7):478–490, July 1981.

[46] Joseph A. Fisher. Very long instruction word architectures and the ELI-512.
In International Symposium on Computer Architecture, pages 140–150. ACM,
1983.

[47] Eugene C. Freuder and Michael J. Quinn. Taking advantage of stable sets of
variables in constraint satisfaction problems. In International Joint Confer-
ence on Artificial Intelligence, pages 1076–1078. Morgan Kaufmann, 1985.

52

[48] Changqing Fu and Kent Wilken. A faster optimal register allocator. In
International Symposium on Microarchitecture, pages 245–256. IEEE, 2002.

[49] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[50] GCC, the GNU Compiler Collection. Website, 2017. URL https://gcc.
gnu.org/.

[51] Catherine H. Gebotys. An efficient model for DSP code generation: Perfor-
mance, code size, estimated energy. In System Synthesis, pages 41–47. IEEE,
1997.

[52] Ian P. Gent, Chris Jefferson, and Ian Miguel. Watched literals for constraint
propagation in Minion. In Principles and Practice of Constraint Program-
ming, volume 4204 of Lecture Notes in Computer Science, pages 182–197.
Springer, 2006.

[53] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in con-
straint programming. In Rossi et al. [124], chapter 10, pages 329–376.

[54] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans-
actions on Programming Languages and Systems, 18:300–324, 1996.

[55] Carmen Gervet. Constraints over structured domains. In Rossi et al. [124],
chapter 17, pages 605–638.

[56] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satis-
fiability solvers. In Handbook of Knowledge Representation, chapter 2, pages
89–134. Elsevier, 2008.

[57] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence,
126(1):43 – 62, February 2001.

[58] James R. Goodman and Wei-Chung Hsu. Code scheduling and register allo-
cation in large basic blocks. In International Conference on Supercomputing,
pages 442–452. ACM, 1988.

[59] David W. Goodwin and Kent Wilken. Optimal and near-optimal global reg-
ister allocations using 0-1 integer programming. Software: Practice and Ex-
perience, 26:929–965, August 1996.

[60] R. Govindarajan. Instruction scheduling. In The Compiler Design Handbook.
CRC, 2nd edition, 2007.

[61] R. Govindarajan, Erik R. Altman, and Guang R. Gao. A framework for
resource-constrained rate-optimal software pipelining. In Vector and Parallel
Processing, volume 854 of Lecture Notes in Computer Science, pages 640–651.
Springer, 1994.

53

https://gcc.gnu.org/
https://gcc.gnu.org/

[62] R. Govindarajan, Erik R. Altman, and Guang R. Gao. Minimizing register
requirements under resource-constrained rate-optimal software pipelining. In
International Symposium on Microarchitecture, pages 85–94. IEEE, 1994.

[63] R. Govindarajan, Hongbo Yang, José Nelson Amaral, Chihong Zhang, and
Guang R. Gao. Minimum register instruction sequencing to reduce register
spills in out-of-order issue superscalar architectures. IEEE Transactions on
Computers, 52(1):4–20, January 2003.

[64] Jawad Haj-Yahya, Avi Mendelson, Yosi Ben Asher, and Anupam Chattopad-
hyay. Energy Efficient High Performance Processors. Springer, 2018.

[65] Lang Hames and Bernhard Scholz. Nearly optimal register allocation with
PBQP. In Modular Programming Languages, pages 346–361. Springer, 2006.

[66] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency
for constraint satisfaction problems. In International Joint Conference on
Artificial Intelligence, pages 356–364. Morgan Kaufmann, 1979.

[67] Mark Heffernan and Kent Wilken. Data-dependency graph transformations
for instruction scheduling. Journal of Scheduling, 8(5):427–451, 2006.

[68] John L. Hennessy and Thomas Gross. Postpass code optimization of pipeline
constraints. ACM Transactions on Programming Languages and Systems, 5
(3):422–448, July 1983.

[69] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 5th edition, 2011.

[70] John L. Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[71] Pascal Van Hentenryck, Vijay A. Saraswat, and Yves Deville. Design, im-
plementation, and evaluation of the constraint language cc(FD). In Selected
Papers from Constraint Programming: Basics and Trends, pages 293–316.
Springer, 1995.

[72] Gabriel Hjort Blindell. Universal Instruction Selection. PhD thesis, KTH
Royal Institute of Technology, Sweden, 2018.

[73] John Hooker. Operations research methods in constraint programming. In
Rossi et al. [124], chapter 15, pages 527–570.

[74] John Hooker and G. Ottosson. Logic-based Benders decomposition. Mathe-
matical Programming, 96(1):33–60, 2003.

[75] Wen-Wen Hsieh and TingTing Hwang. Thermal-aware post compilation for
VLIW architectures. In Asia and South Pacific Design Automation Confer-
ence, pages 606–611. IEEE, 2009.

54

[76] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,
Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E.
Hank, Tokuzo Kiyohara, Grant E. Haab, et al. The superblock: an effective
technique for VLIW and superscalar compilation. Journal of Supercomputing,
7(1-2):229–248, May 1993.

[77] Imagination Technologies Ltd. The MIPS32 Instruction Set Manual, 2016.
Rev. 6.06.

[78] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer Man-
uals, 2017. 325462-065US.

[79] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The
international SAT solver competitions. AI Magazine, 33(1):89–94, 2012.

[80] Richard K. Johnsson. A survey of register allocation. Technical report,
Carnegie Mellon University, United States of America, 1973.

[81] Cliff Young Joseph A. Fisher, Paolo Faraboschi. Embedded Computing. Else-
vier, 2005.

[82] Patrik Karlström. A systematic approach to automated software diversity
using Unison. Master’s thesis, KTH Royal Institute of Technology, Sweden,
2018.

[83] Daniel Kästner. PROPAN: A retargetable system for postpass optimisations
and analyses. In Languages, Compilers, Tools and Theory for Embedded
Systems, volume 1985 of Lecture Notes in Computer Science, pages 63–80.
Springer, 2001.

[84] Christoph Kessler. Scheduling expression DAGs for minimal register need.
Computer Languages, 24(1):33–53, September 1998.

[85] Christoph Kessler. Compiling for VLIW DSPs. In Handbook of Signal Pro-
cessing Systems, pages 603–638. Springer, 2010.

[86] Martin Kjellin. Adapting a constraint-based compiler tool to a new VLIW
architecture. Master’s thesis, Uppsala University, Sweden, 2018. Ongoing
work.

[87] David Koes and Seth Copen Goldstein. A progressive register allocator for
irregular architectures. In Code Generation and Optimization, pages 269–280.
IEEE, 2005.

[88] David Koes and Seth Copen Goldstein. A global progressive register allocator.
In Programming Language Design and Implementation, pages 204–215. ACM,
2006.

55

[89] David Koes and Seth Copen Goldstein. Register allocation deconstructed. In
Software and Compilers for Embedded Systems, pages 21–30. ACM, 2009.

[90] Timothy Kong and Kent Wilken. Precise register allocation for irregular
architectures. In International Symposium on Microarchitecture, pages 297–
307. IEEE, 1998.

[91] Richard E. Korf. Optimal rectangle packing: Initial results. In International
Conference on Automated Planning and Scheduling, pages 287–295. AAAI
Press, 2003.

[92] Ulrich Kremer. Optimal and near-optimal solutions for hard compilation
problems. Parallel Processing Letters, 7(4):371–378, 1997.

[93] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. SoK:
Automated software diversity. In IEEE Symposium on Security and Privacy,
pages 276–291. IEEE, 2014.

[94] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization,
pages 75–88. IEEE, 2004.

[95] Chingren Lee, Jenq Kuen Lee, TingTing Hwang, and Shi-Chun Tsai. Com-
piler optimization on VLIW instruction scheduling for low power. ACM
Transactions on Design Automation of Electronic Systems, 8(2):252–268,
April 2003.

[96] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Media-
Bench: A tool for evaluating and synthesizing multimedia and communicatons
systems. In International Symposium on Microarchitecture, pages 330–335.
IEEE, 1997.

[97] Xavier Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, July 2009.

[98] Rainer Leupers and Peter Marwedel. Time-constrained code compaction for
DSP’s. IEEE Transactions on Very Large Scale Integration Systems, 5:112–
122, March 1997.

[99] Rainer Leupers and Peter Marwedel. Retargetable Compiler Technology for
Embedded Systems: Tools and Applications. Springer, 2001.

[100] Michele Lombardi and Michela Milano. Optimal methods for resource allo-
cation and scheduling: A cross-disciplinary survey. Constraints, 17(1):51–85,
January 2012.

[101] Abid M. Malik. Constraint Programming Techniques for Optimal Instruction
Scheduling. PhD thesis, University of Waterloo, Canada, 2008.

56

[102] Abid M. Malik, Michael Chase, Tyrel Russell, and Peter van Beek. An ap-
plication of constraint programming to superblock instruction scheduling. In
Principles and Practice of Constraint Programming, volume 5202 of Lecture
Notes in Computer Science, pages 97–111. Springer, 2008.

[103] Abid M. Malik, Jim McInnes, and Peter van Beek. Optimal basic block in-
struction scheduling for multiple-issue processors using constraint program-
ming. Artificial Intelligence Tools, 17(1):37–54, 2008.

[104] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Springer, 1998.

[105] Santosh G. Nagarakatte and R. Govindarajan. Register allocation and opti-
mal spill code scheduling in software pipelined loops using 0-1 integer linear
programming formulation. In Compiler Construction, volume 4420 of Lecture
Notes in Computer Science, pages 126–140. Springer, 2007.

[106] Mayur Naik and Jens Palsberg. Compiling with code-size constraints. In
Languages, Compilers, Tools and Theory for Embedded Systems, pages 120–
129. ACM, 2002.

[107] V. Krishna Nandivada. Advances in register allocation techniques. In The
Compiler Design Handbook. CRC, 2nd edition, 2007.

[108] V. Krishna Nandivada and Jens Palsberg. SARA: Combining stack allocation
and register allocation. In Compiler Construction, volume 3923 of Lecture
Notes in Computer Science, pages 232–246. Springer, 2006.

[109] V. Krishna Nandivada, Fernando Magno Quintão Pereira, and Jens Palsberg.
A framework for end-to-end verification and evaluation of register allocators.
In Static Analysis, volume 4634 of Lecture Notes in Computer Science, pages
153–169. Springer, 2007.

[110] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial
Optimization. Wiley, 1999.

[111] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman problems. SIAM
Review, 33(1):60–100, February 1991.

[112] Fernando Magno Quintão Pereira. A survey on register allocation. Technical
report, University of California, United States of America, 2008.

[113] Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation by
puzzle solving. In Programming Language Design and Implementation, pages
216–226. ACM, 2008.

[114] Martin Persson. Evaluating Unison’s speedup estimation. Master’s thesis,
KTH Royal Institute of Technology, Sweden, 2017.

57

[115] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Transactions on Programming Languages and Systems, 21:895–913, 1999.

[116] Jonathan Protzenko. A survey of register allocation techniques. Technical
report, École Polytechnique, France, 2009.

[117] Claude-Guy Quimper, Peter van Beek, Alejandro López-Ortiz, Alexander
Golynski, and Sayyed Bashir Sadjad. An efficient bounds consistency al-
gorithm for the global cardinality constraint. In Principles and Practice of
Constraint Programming, volume 2833 of Lecture Notes in Computer Science,
pages 600–614. Springer, 2003.

[118] Vaclav Rajlich and M. Drew Moshier. A survey of algorithms for register
allocation in straight-line programs. Technical report, University of Michigan,
United States of America, 1984.

[119] B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel process-
ing: history, overview, and perspective. Journal of Supercomputing, 7:9–50,
May 1993.

[120] B. Ramakrishna Rau and Christopher D. Glaeser. Some scheduling tech-
niques and an easily schedulable horizontal architecture for high performance
scientific computing. ACM SIGMICRO Newsletter, 12(4):183–198, December
1981.

[121] Jean-Charles Régin. A filtering algorithm for constraints of difference in
CSPs. In AAAI Conference on Artificial Intelligence, pages 362–367. AAAI
Press, 1994.

[122] Jean-Charles Régin. Generalized arc consistency for global cardinality con-
straint. In AAAI Conference on Artificial Intelligence, pages 209–215. AAAI
Press, 1996.

[123] Hongbo Rong and R. Govindarajan. Advances in software pipelining. In The
Compiler Design Handbook. CRC, 2nd edition, 2007.

[124] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Con-
straint Programming. Foundations of Artificial Intelligence. Elsevier, 2006.

[125] Bernhard Scholz and Erik Eckstein. Register allocation for irregular archi-
tectures. In Languages, Compilers, Tools and Theory for Embedded Systems,
pages 139–148. ACM, 2002.

[126] Christian Schulte and Mats Carlsson. Finite domain constraint programming
systems. In Rossi et al. [124], chapter 14, pages 493–524.

58

[127] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and West-
ley Weimer. Post-compiler software optimization for reducing energy. In
Architectural Support for Programming Languages and Operating Systems,
pages 639–652. ACM, 2014.

[128] Paul Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In Principles and Practice of Constraint Program-
ming, volume 1520 of Lecture Notes in Computer Science, pages 417–431.
Springer, 1998.

[129] Ghassan Shobaki, Maxim Shawabkeh, and Najm Eldeen Abu Rmaileh. Pre-
allocation instruction scheduling with register pressure minimization using
a combinatorial optimization approach. ACM Transactions on Architecture
and Code Optimization, 10(3):1–31, September 2013.

[130] Ghassan Shobaki and Kent Wilken. Optimal superblock scheduling using
enumeration. In International Symposium on Microarchitecture, pages 283–
293. IEEE, 2004.

[131] Ghassan Shobaki, Kent Wilken, and Mark Heffernan. Optimal trace schedul-
ing using enumeration. ACM Transactions on Architecture and Code Opti-
mization, 5:1–32, March 2009.

[132] Barbara M. Smith. Modelling. In Rossi et al. [124], chapter 11, pages 377–406.

[133] Vugranam Sreedhar, Roy Ju, David Gillies, and Vatsa Santhanam. Translat-
ing out of static single assignment form. In Static Analysis, volume 1694 of
Lecture Notes in Computer Science, pages 849–849. Springer, 1999.

[134] Dominic Sweetman. See MIPS Run, Second Edition. Morgan Kaufmann,
2006.

[135] Peter van Beek. Backtracking search algorithms. In Rossi et al. [124], chap-
ter 4, pages 85–134.

[136] Peter van Beek and Kent Wilken. Fast optimal instruction scheduling for
single-issue processors with arbitrary latencies. In Principles and Practice of
Constraint Programming, volume 2239 of Lecture Notes in Computer Science,
pages 625–639. Springer, 2001.

[137] Pascal Van Hentenryck and Jean-Philippe Carillon. Generality vs. specificity:
an experience with AI and OR techniques. In AAAI Conference on Artificial
Intelligence, pages 660–664. AAAI Press, 1988.

[138] Willem-Jan van Hoeve. The alldifferent constraint: A survey. Tech-
nical report, Centrum Wiskunde & Informatica, 2001. Archived at
arXiv:cs/0105015 [cs.PL].

59

[139] Willem-Jan van Hoeve and Irit Katriel. Global constraints. In Rossi et al.
[124], chapter 6, pages 169–208.

[140] Fredrik Wickberg and Mattias Eriksson. Outperforming state-of-the-art com-
pilers in Unison. Ericsson research blog entry, https://www.ericsson.com/
research-blog/outperforming, 2017.

[141] Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling
using integer programming. In Programming Language Design and Imple-
mentation, pages 121–133. ACM, 2000.

[142] Tom Wilson, Gary Grewal, Ben Halley, and Dilip Banerji. An integrated
approach to retargetable code generation. In High-level Synthesis, pages 70–
75. IEEE, 1994.

[143] Tom Wilson, Gary Grewal, Shawn Henshall, and Dilip Banerji. An ILP-based
approach to code generation. In Code Generation for Embedded Processors,
pages 103–118. Springer, 2002.

[144] Sebastian Winkel. Exploring the performance potential of Itanium processors
with ILP-based scheduling. In Code Generation and Optimization, pages 189–
200. IEEE, 2004.

[145] Sebastian Winkel. Optimal versus heuristic global code scheduling. In Inter-
national Symposium on Microarchitecture, pages 43–55. IEEE, 2007.

60

https://www.ericsson.com/research-blog/outperforming
https://www.ericsson.com/research-blog/outperforming

	Overview
	Introduction
	Background
	Thesis Statement
	Approach
	Methods
	Contributions
	Publications
	Outline

	Constraint Programming
	Modeling
	Solving

	Summary of Publications
	Survey on Combinatorial Register Allocation and Instruction Scheduling
	Constraint-based Register Allocation and Instruction Scheduling
	Combinatorial Spill Code Optimization and Ultimate Coalescing
	Combinatorial Register Allocation and Instruction Scheduling
	Register Allocation and Instruction Scheduling in Unison
	Individual Contributions

	Conclusion and Future Work
	Applications
	Future Work

	Bibliography

