
“It Looks Like You’re Writing a Parallel Loop”
A Machine Learning Based Parallelization Assistant

Aleksandr Maramzin
The University of Edinburgh

United Kingdom
s1736883@sms.ed.ac.uk

Christos Vasiladiotis
The University of Edinburgh

United Kingdom
c.vasiladiotis@sms.ed.ac.uk

Roberto Castañeda Lozano
The University of Edinburgh

United Kingdom
roberto.castaneda@ed.ac.uk

Murray Cole
The University of Edinburgh

United Kingdom
mic@ed.ac.uk

Björn Franke
The University of Edinburgh

United Kingdom
bfranke@ed.ac.uk

Abstract
Despite decades of research into parallelizing compiler tech-
nology, software parallelization remains a largely manual
task where the key resource is expert time. In this paper
we focus on the time-consuming task of identifying those
loops in a program, which are both worthwhile and feasi-
ble to parallelize. We present a methodology and tool which
make better use of expert time by guiding their effort directly
towards those loops, where the largest performance gains
can be expected while keeping analysis and transformation
effort at a minimum.
We have developed a novel parallelization assistant that

provides programmers with a ranking of all loops in a pro-
gram based on their overall merit. For each loop this metric
combines its potential contribution to speedup and an es-
timated probability for its successful parallelization. This
probability is predicted using a machine learning model,
which has been trained, validated, and tested on 1415 la-
belled loops, achieving a prediction accuracy greater than
90%.
We have evaluated our parallelization assistant against

sequential C applications from the SNU NAS benchmark
suite. We show that our novel methodology achieves par-
allel performance levels comparable to those from expert
programmers while requiring less expert time. On average,
our assistant reduces the number of lines of code that have to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
AI-SEPS ’19, October 22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6983-1/19/10. . . $15.00
https://doi.org/10.1145/3358500.3361567

be inspected manually before reaching expert-level parallel
speedup by 20%.

CCSConcepts •Computingmethodologies→Machine
learning; • Software and its engineering→ Compilers.

Keywords Compilers, loop parallelization, machine learn-
ing, assistant tool
ACM Reference Format:
Aleksandr Maramzin, Christos Vasiladiotis, Roberto Castañeda
Lozano, Murray Cole, and Björn Franke. 2019. “It Looks Like You’re
Writing a Parallel Loop”: A Machine Learning Based Paralleliza-
tion Assistant. In Proceedings of the 6th ACM SIGPLAN Interna-
tional Workshop on AI-Inspired and Empirical Methods for Software
Engineering on Parallel Computing Systems (AI-SEPS ’19), Octo-
ber 22, 2019, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3358500.3361567

1 Introduction
Parallel hardware is ubiquitous through the entire spectrum
of computing systems, from low-end embedded devices to
high-end supercomputers. Yet, most of the existing software
is written in a sequential fashion. Despite decades of inten-
sive research in automatic software parallelization [16], fully
exploiting the potential of modern multi- and many-core
hardware still requires a significant manual effort. Given
the difficulty of the obstacles faced by automatic paralleliza-
tion today, we do not expect that programmers will be lib-
erated from performing manual parallelization in the near
future [12].

This paper introduces a novel parallelization assistant that
aids a programmer in the process of parallelizing a program
in the frequent case where automatic approaches fail to do
so. The assistant reduces the manual effort in this process
by presenting a programmer with a ranking of program
loops that are most likely to 1) require little or no effort
for successful parallelization and 2) improve the program’s
performance when parallelized. Thus, it improves over the
traditional, profile-guided process by also taking into account
the probability of potential parallelization for each of the
profiled loops.

1

https://doi.org/10.1145/3358500.3361567
https://doi.org/10.1145/3358500.3361567

AI-SEPS ’19, October 22, 2019, Athens, Greece Aleksandr Maramzin, Christos Vasiladiotis, Roberto Castañeda Lozano, Murray Cole, and Björn Franke

At the core of our parallelization assistant resides a novel
machine-learning (ML) model of loop parallelizability. Loops
are compelling candidates for parallelization, as they are
naturally decomposable and tend to capture most of the exe-
cution time in a program. Furthermore, focusing on loops
allows the model to leverage a large amount of specific anal-
yses available in modern compilers, such as generalized iter-
ator recognition [14] and loop dependence analysis [10]. The
model encodes the results of these analyses together with
basic properties of the loops as machine learning features.

The loop parallelizability model is trained, validated, and
tested on 1415 loops from the SNU NAS Parallel Benchmarks
(SNU NPB) [19]. The loops are labelled using a combina-
tion of expert OpenMP [5] annotations and optimization
reports from Intel C++ Compiler (ICC), a production-quality
parallelizing compiler. The model is evaluated on multiple
machine learning algorithms, including tree-based methods,
support vector machines, and neural networks. The evalu-
ation shows that – despite the limited size of the data set –
using support vector machines allows the model to achieve
a prediction accuracy higher than 90%. The model improves
over the ICC Compiler across the sequential C version of
the SNU NPB suite by detecting 13% more parallel loops.
Albeit this improvement comes at the cost of introducing
false positives, where non-parallelizable loops are misclassi-
fied as parallelizable. However, the false positive rate in our
evaluation is as low as 6.5%. We feel this is acceptable, as our
parallelization assistant does not automatically restructure
code but leaves the parallelization decision in the hands of
the programmers.
The parallelization assistant combines inference on the

parallelizabilitymodel with traditional profiling to rank higher
those loopswith a high probability of being parallelizable and
impacting the program performance. An evaluation on eight
programs from the SNU NPB suite shows that the program
performance tends to improve faster as loops are parallelized
in the ranking order suggested by our parallelization assis-
tant compared to a traditional order based on profiling only.
On average, following the order suggested by the assistant
reduces by approximately 20% the number of lines of code
a programmer has to examine manually to parallelize SNU
NPB to its expert-level speedup. Given the high level of effort
involved in manual analysis, such a reduction can translate
into substantial development cost savings.

1.1 Motivating Example
Consider the sequential C implementation of the Conjugate
Gradient (CG) benchmark from the SNU NPB suite. Table 1
shows the top three CG loops as ranked by the Intel Profiler
(based on their execution time) and by our parallelization
assistant (additionally taking into account their paralleliz-
ability). Both rankings include the same loops, but, crucially,
the loops are ranked in a different order.

Table 1. Comparison of the profiler and assistant rankings
for the CG benchmark loops (limited to the top three loops).

Ranking Profiler Assistant
loop loop parallelizability

1 cg.c:326 cg.c:509 85%
2 cg.c:484 cg.c:326 29%
3 cg.c:509 cg.c:484 8%

for (it = 1; it <= NITER; it++) {
...
if (timeron) timer_start(T_conj_grad);
conj_grad(colidx ,rowstr ,x,z,a,p,q,r,&rnorm);
if (timeron) timer_stop(T_conj_grad);
...
printf(" %5d %20.14E%20.13f\n", it ,

rnorm , zeta);
...

}

Listing 1. cg.c:326. Longest running loop in CG. The loop
cannot be parallelized due to inter-iteration dependences
and side effects caused by system calls.

for (j = 0; j < lastrow -firstrow +1; j++) {
suml = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++)

suml = suml + a[k]*p[colidx[k]];
q[j] = suml;

}

Listing 2. cg.c:509. Longest running loop in CG among
those that can be parallelized.

Following the profiler ranking (second column in Table 1),
a parallelization expert would concentrate on analyzing the
loop cg.c:326 first. Analyzing this loop turns out to be
costly (it consists of 100+ lines of code) and unfruitful (it is
actually not parallelizable due to inter-iteration dependen-
cies and side effects, see Listing 1). This analysis would be
followed by an equally unfruitful analysis of loop cg.c:484.

In contrast, our parallelization assistant (two last columns
in Table 1) ranks the loop cg.c:509 before loops cg.c:326
and cg.c:484, as it finds that the former has a significantly
higher probability of being parallelizable (see last column
in Table 1). Following the assistant’s ranking, a paralleliza-
tion expert would thus concentrate on analyzing the loop
cg.c:509 first. Analyzing this loop is inexpensive (it con-
sists of only six lines of code, see Listing 2) and fruitful:
its parallelization speeds up CG by a factor of 2.8, which
is 70% of the speedup obtained by parallelizing the entire
benchmark. Hence, following the ranking proposed by our
assistant, a parallelization expert can achieve most of the
available speedup in CG in a fraction of the time required
by a traditional profile-guided parallelization process.

2

“It Looks Like You’re Writing a Parallel Loop” AI-SEPS ’19, October 22, 2019, Athens, Greece

1.2 Contributions
In summary, this paper makes the following contributions:

▷ We introduce a machine learning model, which can be
used to predict the probability with which sequential
C loops can be parallelized (Sections 2 and 3);

▷ we integrate profiling of execution time with our novel
MLmodel into a parallelization assistant, which guides
the user through a ranked list of loops for paralleliza-
tion (Section 4); and

▷ we demonstrate that our tool and methodology in-
crease programmer productivity by identifying paral-
lel loop candidates better than existing state-of-the-art
approaches (Section 5).

2 Predicting Parallel Loops
We approach the prediction of parallel loops as a super-
vised probabilistic machine learning classification problem.
Based on sequential reference applications and their manu-
ally parallelized counterparts as well as Intel’s parallelizing
C/C++ compiler, we create a data set of parallelizable and
non-parallelizable loops. We extract loop features and use
the data set to train a machine learning model, which links
feature vectors describing the loops with their observed par-
allelizability. We then use the trained model as a probabilistic
predictor: for each new loop we determine its feature vector
and then predict the probability of the loop being paralleliz-
able [17]. For naturally probabilistic models like trees we
directly use the computed classification probabilities (frac-
tion of parallelizable training samples in the leaf node). For
the support vector machines classifier, we use Platt scaling
to derive the probabilities.
In this section we introduce the parallelizability model,

whereas Section 3 presents a standard ML performance as-
sessment including accuracy, precision and recall scores.
Descriptions and definitions of the machine learning tech-
niques we use can be found in [9]. We used the scikit-learn
library [18] for all ML related tasks.

2.1 Loop Analysis & Feature Extraction
For the purpose of machine learning, program loops are
represented by numerical feature vectors. We derive these
features using standard compiler analyses operating on the
Program Dependence Graph (PDG) [6] of a loop. The PDG
is a representation that captures both data and control infor-
mation and is constructed using dependence analysis [11].
In addition we use generalized loop iterator recognition [14]
to separate loop iterators from loop payloads. This enables
us to define and extract features relating to each of those
loop components. In total, we extract a set of 74 static loop
features which are based on structural properties of the PDG
and the types of instructions constituting it. Table 2 summa-
rizes these features.

Our features have simple and intuitive motivations behind

them. Loop proportion features are backed up by the fact
that larger loops tend to be harder to parallelize. Complex
iterators include non-trivial cross-iteration transitions (e.g
linked-list update), unknown iteration numbers, etc. Payload
SCCs (Strongly Connected Components) introduce cross-
iteration dependencies. Cohesion features characterize how
tightly components of loops are coupled together in terms
of the number of edges between them. Loop dependence
features count the number of edges in different loop parts as
well as their types. Loop instruction features characterize the
loop’s instruction mix, assigning more importance to mem-
ory reads/writes, calls and branches. Non-inlined function
calls usually prevent loop parallelization. Intensive mem-
ory work (memory read/write fraction features) complicates
parallelization as well.

2.2 Feature Selection
To avoid overfitting, we discard irrelevant or redundant fea-
tures using a pipeline of feature selection methods from the
scikit-learn library. First we eliminate features with a low
variance score, thenwe fit a decision tree-basedmodel and se-
lect features with importance score above a given threshold.
After that we repeatedly run Recursive Feature Elimination,
Cross-Validated (RFECV) to improve accuracy, precision and
recall scores. This yields the final set of features. Table 3
presents the 10 highest-ranked features in this set.

2.3 Model & Hyper-Parameter Selection
We evaluate several machine learning classification algo-
rithms in our parallelization assistant, including tree-based
methods like decision trees (DT), random forests (RFC) and
boosted decision trees (AdaBoost); support vector machines
classifiers (SVC) and multi-layer perceptron neural networks
(MLP). Section 3.1 shows that these models perform similarly
with SVC and MLP performing slightly better.

For each ML model we use exhaustive hyper-parameter
grid search and pick the grid nodewith the best cross-validation
score on the validation set. The details of all ML pipeline
stages are available in our repository [15].

2.4 Training Data & ML Model Training
For training our ML model we use a total of 1415 loops from
the SNU NPB benchmark suite. Out of those loops, 210 have
been annotated by (external) human experts with parallel
OpenMP pragmas. We use these annotations as labelled data
to indicate parallelizable loops. However, the data is not
complete. Human programmers strive to capture only coarse-
grain parallelism and do not annotate every parallelizable
loop. Hence, we augment the training data with the help of
the ICC Compiler, which finds additional parallelizable loops.
We combine the results into our training set comprising a
total 1415 loops, of which 995 are labelled as parallelizable.
We then use K-fold and Leave-One-Out Cross-Validation
(LOOCV) methodologies to train and test our ML models.

3

AI-SEPS ’19, October 22, 2019, Athens, Greece Aleksandr Maramzin, Christos Vasiladiotis, Roberto Castañeda Lozano, Murray Cole, and Björn Franke

Table 2. Static features used for the characterization of loops.

Feature groups Features Description

loop proportion
absolute size number of LLVM IR instructions

payload fraction payload instructions / total loop instructions
proper SCCs number number of payload SCCs with more than 1 instruction

loop dependencies number of PDG edges for different dependence classes: read/write order (true, anti, output),
dependency type (register, memory, control), other (cross-iteration, etc.)

loop cohesion
iterator/payload edges between iterator/payload

total loop edges

critical/regular payload edges between critical/regular payload
total loop payload edges

loop instruction
nature

numbers and fractions of different parallelization critical instructions (memory loads and
stores, branches, calls, etc.)

Table 3. Relative importance of static loop features, ranked
by fitting a tree-based ML model.

Feature Importance
payload call fraction 23.5
iter/payload non-cf cohesion 18.5
payload mem write fraction 6.1
loop absolute size 5.7
critical payload pointer access count 5.3
payload memory dependence count 4.0
critical payload non-cf cohesion 2.9
payload pointer access fraction 2.7
critical payload total cohesion 2.6

3 ML Predictive Performance
In our work we employ two cross-validation (CV) techniques.
We evaluate the overall predictive performance our trained
ML model is capable of achieving on SNU NPB benchmarks
using K-fold CV. To deploy our assistant against single bench-
marks of the suite and assess its effectiveness (Section 5) we
have to use a modified Leave-One-Out CV.

3.1 Overall Model Performance
Table 4 shows the overall predictive performance of different
ML models measured with K-fold CV on the whole SNU NPB
data set. Training and testing have been done for different
values of K (5, 10, 15, 20, 25, 30) and the accuracy remains
stable across the entire range. The same is true of recall
and precision scores. We used the baselines (constant "paral-
lelizable" prediction and uniform) available in scikit-learn to
compare our models against.

The SVC model has the highest average accuracy and suc-
cessfully manages to recall 95.24% of all parallel loops. The
ICC Compiler succeeds in parallelizing 812 out of 995 paral-
lelizable loops available in SNU NPB. Thus, on average SVC
extends the ICC Compiler’s parallelization capabilities to 948
loops. Figure 1 shows that out of the 10% of mispredictions
that SVC makes, 65% are false positives. Hence, the average
unsafe error rate is 6.5%.

Table 4. Average predictive performance of different ML
models measured with K-fold CV on the whole set of 1415
SNU NPB loops.

ML model accuracy recall precision
constant 70.32 100 70.32
uniform 46.27 41.50 69.79
SVC 90.04 95.24 91.06

AdaBoost 86.96 92.92 89.06
DT 84.36 89.57 87.90
RFC 86.65 93.22 88.47
MLP 89.40 93.77 91.39

SVC AdaBoost DT RFC MLP
0

10

20

30

40

50

60

70

80

90

100

35% 39% 45%
36% 41%

65% 61% 55%
64% 59%

Misprediction Safety

unsafe
safe

p
e

rc
e

n
t o

f c
a

se
s

Figure 1. Breakdown of misclassification errors.

3.2 Model Performance Within Assistant
Our proposed assistant (Section 4) is trained and tested using
LOOCV rather than K-fold CV. Instead of treating the entire
set of loops from all SNU NPB benchmarks as a single data
set, in this context we train the model on nine benchmarks
and test it on the remaining one. Doing so completely ex-
cludes the loops of the target benchmark out of a training
set, but allows us to get predictions for all benchmark loops,
parallelize them if advised so, and test the effectiveness of
our assistant. The drawback of this scheme is that it might
potentially reduce the accuracy if the nature of loops in the
target benchmark dramatically differs from that of loops
seen in the training set. Figure 2 compares LOOCV accu-
racy against that of K-Fold CV for all SNU NPB benchmarks,
where K-Fold CV is conducted on a data set consisting of

4

“It Looks Like You’re Writing a Parallel Loop” AI-SEPS ’19, October 22, 2019, Athens, Greece

loops from a single benchmark only. The comparison proves
that lower LOOCV accuracies are attributed to a reduced
training data set and not to our ML model.

BT CG DC EP FT IS LU MG SP UA
0%

20%

40%

60%

80%

100% 86%
74% 73%

92%

57%
74%

90%

65%

89%
76%

Modified LOOCV

avg_per_model
svc
rfc

test benchmark

a
cc

u
ra

cy

BT CG DC EP FT IS LU MG SP UA
0%

20%

40%

60%

80%

100% 93%

74%
86% 92%

81% 87%
94%

79%
92%

86%

Benchmark K-fold CV

avg_per_model
svc
rfc

k-fold benchmark

a
cc

u
ra

cy

Figure 2. Prediction accuracy measured with modified
LOOCV and compared against that of K-fold CV for single
benchmarks.

4 Parallelization Assistant
The ML-based predictor developed and assessed in the previ-
ous two sections is a core component of our novel paralleliza-
tion assistant. This assistant incorporates prediction results
on whether a loop can be parallelized and combines this with
profiling information. It then produces a ranking of all loops
in an application to guide a programmer towards the most
beneficial loop candidates for their manual parallelization
effort. We do not seek to replace the programmers from the
process, but aim to assist and increase their productivity.

Loop Ranking. The loop ranking computed by our paral-
lelization assistant combines a loop’s contribution to the
overall program execution time with its predicted probability
of being parallelizable. In particular, we obtain the ranking
by applying a shifted sigmoid function to the predicted paral-
lelizability probability multiplied by the application runtime
fraction a loop takes to run as shown in Figure 3.
The intuition for using this function to combine the two

metrics is that it prioritizes parallelizable long-running loops
and scales down the weight of non-parallelizable loops irre-
spective of their contribution to execution time. The effect of
this can be seen in Figure 4 for the loops of the FT benchmark.
If programmers attempt to parallelize loops in the order

prescribed by their execution time, they will inevitably waste
their efforts trying to parallelize loops which may be long-
running, but offer little or no opportunity for extracting
parallelism. Instead, by taking into account predicted par-
allelizability our ranking directly guides the programmer
towards loops that significantly contribute to overall execu-
tion time and offer a realistic prospect of parallelization.

runtime

1+exp(−C (prob−
1
2
))

probability

runtime

assistant
score

Figure 3. For each loop the ranking function combines its
contribution to the application’s execution time and its pre-
dicted probability of being parallelizable.

non-parallelizableparallelizable

Figure 4. Change of loop rankings with the application of
the assistant ranking function for the 46 loops of the FT
benchmark. Ranking based on loop execution time alone (top
figure) results in some high-ranked, but non-parallelizable
loops. Combining profiled execution time and parallelizabil-
ity in a single score (middle figure) results in a ranking that
prioritizes parallelizable loops (bottom figure).

5

AI-SEPS ’19, October 22, 2019, Athens, Greece Aleksandr Maramzin, Christos Vasiladiotis, Roberto Castañeda Lozano, Murray Cole, and Björn Franke

Table 5. Possible loop classification combinations for the
side-by-side setup of our ML predictor and the ICC Compiler.

ICC Predictor True
Parallel Classification

0 0 0 icc/predictor agreement
0 0 1 missed opportunity
0 1 0 false positive
0 1 1 discovery
1 0 0 impossible
1 0 1 icc shielding
1 1 0 impossible
1 1 1 icc/predictor agreement

4.1 Comparison to Static Analysis
We have compared the generated loop parallelizability clas-
sifications of our assistant against that of the ICC Compiler,
which due to its use of static analysis is conservative and
occasionally misses some parallelization opportunities. The
ML approach to parallelization with a human programmer
responsible for final code transformation allows our par-
allelization assistant to be more aggressive than the ICC
Compiler. In other words, our model can predict more loops
as parallelizable.
We have set up an experiment where we apply our ML

predictor side-by-side with the ICC Compiler. Both aim
at independently classifying loops as parallelizable or not.
There is a total of six possible classification combinations
that our scheme can produce (summarized in Table 5). The
first and last table rows show the agreement cases, where
the ICC Compiler and the ML predictor identically classify
truly (non-)parallelizable loops as (non-)parallelizable. The
“missed opportunity” cases where both ICC Compiler and
ML predictor miss parallelizable loops also represent agree-
ment and are not interesting. The most interesting cases are
those where the ML predictor and the ICC Compiler disagree.
While ICC Compiler is conservative and will never classify
a non-parallelizible loop as parallelizible, the statistical ML
predictor can make a “false positive” error. That works in the
opposite direction as well. The ML predictor can discover
truly parallelizible loops which escape compiler analysis.
These cases are classified as “discovery” and have been man-
ually checked in the source code of SNU NPB. The results
are summarized in Table 6, which reports on the reasons
behind ICC conservativeness. False negative mispredictions
make the ML predictor miss some real parallelization oppor-
tunities, but in the fraction of these cases the ICC Compiler
can catch them and “shield” the ML predictor.
Figure 5 shows the relative frequency of different loop

classification combinations from Table 5. We repeatedly ran
K-fold CV on the whole set of SNU NPB loops and sorted the
outcomes into separate classification buckets from Table 5.
In 80% of the cases, our parallelization assistant agrees with

Table 6. Classification of parallelizable loops rejected for
parallelization by the ICC Compiler.

Reason Num Reason Num Reason Num
missed

reduction 18 array pri-
vatization 7

conservative
analysis 60

unknown
iteration
number

7
static de-
pendencies 46

too
complex 22

non-
inlined
calls

4 other 4 total 168

3%

8%

10%

2%

77%

missed opportunity

false positive

discovery

icc shielding

icc & predictor agreement

Figure 5. Distribution of loop classification by the ICC Com-
piler and our predictor.

the ICC Compiler and classifies truly (non-)parallel loops as
(non-)parallel. This is an expected result as we have used
ICC (along with OpenMP annotated loops) to train our ML
model. However, sometimes our parallelization assistant and
ICC reach different conclusions. While there is agreement
in the majority of the cases, our tool discovers an additional
10% of genuine parallelism inaccessible to the ICC Compiler,
while allowing 8% of false positives.

5 Assistant Evaluation
In this section we evaluate the effectiveness of our paral-
lelization assistant. In particular, we are interested in the
potential programmer productivity gains delivered by our
tool and savings on human expert time.
Our study assumes that the human expert starts with a

sequential version of the SNU NPB benchmarks. The goal
is to parallelize these applications to a performance level
matching that of their existing parallel versions. By using
our assistant we expect the human expert to consider fewer
loops than by using a profiling-based approach, i.e. consid-
ering loops in decreasing execution time. We also compare
against the state-of-the-art fully automated parallelization
approach implemented in the ICC Compiler. The ICC Com-
piler not only fails to achieve noticeable speedups, but actu-
ally slows the performance down on most of the benchmarks.

6

“It Looks Like You’re Writing a Parallel Loop” AI-SEPS ’19, October 22, 2019, Athens, Greece

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

BT

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

,
se

c

0 1 2 3 5 10 15 20 25
0

10

20

30

40

50

60

70

80

CG

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

,
se

c

0 1 2 3 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

EP

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

,
se

c

0 1 2 3 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

FT

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

,
se

c

0 1 2 3 5 10 15 20 25
0

50

100

150

200

250

300

LU

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

,
se

c

0 5 10 15 20 25
0

1

2

3

4

5

6

MG

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

,
se

c

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160
SP

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

, s
e

c

0 5 10 15 20 25
0

200

400

600

800

1000

1200
UA

profile
svc
mlp
rfc
ada
dt
serial
omp

loops

ru
n

tim
e

,
se

c

Figure 6. From left to right more loops are parallelized for each benchmark. As we parallelize more loops, program execution
times improve over the initial sequential performance and reach the performance level of the reference OpenMP implementa-
tions. Our ML based parallelization assistant requires the user to parallelize fewer loops than a purely profile-guided approach
to reach the maximum parallel speedup.

7

AI-SEPS ’19, October 22, 2019, Athens, Greece Aleksandr Maramzin, Christos Vasiladiotis, Roberto Castañeda Lozano, Murray Cole, and Björn Franke

For the BT benchmark the slowdown reaches 3.5 times. In
contrast, the OpenMP reference implementation results in a
(geo-)mean speedup of 2.19 across the benchmark suite.

Figure 6 summarizes our results as performance conver-
gence curves. For each benchmark the curves plot its execu-
tion time (y-axis) as a function of the number of analyzed and
possible parallelized loops (x-axis). The runtime is bounded
within the runtime of the serial execution (top dashed line)
and the time of the reference parallel version (bottom dashed
line). Our goal is to reach the performance of the reference
parallel versions of each program by parallelizing them one
loop at a time following the rankings offered by our assistant
and the profiler. The neural network based MLP model of
our assistant provides the fastest overall performance con-
vergence. While there is some variation depending on the
ML model used for the parallelization prediction, in gen-
eral ML-assisted parallelization outperforms or equals the
profile-guided schemes across all benchmarks.
Following the rankings of our assistant in parallelizing

the BT, CG and FT benchmarks, we reach their maximum
potential performance faster. For BT, maximum parallel per-
formance can be reached after the user has parallelized the
first three loops (3061 LOC in Table 7) suggested by our as-
sistant, while profile-guided parallelization requires 6 loops
(6122 LOC) to be parallelized first before reaching the same
performance level. For CG, if we follow the suggestion of
our assistant to first parallelize a small loop (6 LOC), we are
able to achieve 70% of the maximum potential speedup (see
Section 1.1). On the other hand, using the profiler ranking
requires examining three loops, totalling in 330 LOC, to yield
the same performance gains. Moreover, for the SP and UA
benchmarks, some of the assistant rankings require the pro-
grammer to examine more loops than the profiler. However,
the loops proposed by the assistant in the UA benchmark
are actually simpler, since they consist of fewer LOC – 508
LOC for MLP and 579 for DT versus the 882 LOC offered
by the profiler. By following our assistant’s suggestions, a
programmer would be required to examine 20% less LOC on
average across all models.

In some cases, partial benchmark parallelization might re-
sult in a slowdown. In the case of LU, after having parallelized
the first 25 loops we do not converge to the best achievable
parallel version performance. There are a total of 40 OpenMP
pragmas in the benchmark and we need to parallelize all the
respective loops to reach the best performance level. In the
case of UA, all rankings suggest analyzing a long-running
innermost loop first. Its parallelization actually increases
running time due to a synchronization barrier being intro-
duced at a wrong program point. It takes 30 loops for the
MLP model to achieve the parallel version performance.
Finally, we observe that neither our parallelization assis-

tant nor the profiler reach the performance of the reference
OpenMP versions on the DC and IS benchmarks. Manual

inspection reveals that these benchmarks have been paral-
lized using OpenMP parallel sections, but do not contain any
OpenMP parallel loops. Both our parallelization assistant
and the profiler incorrectly suggest to parallelize some of the
benchmark loops, though. Table 7 summarizes the results of
applying our parallelization assistant to the SNU NPB suite.

6 Related Work
Profitability Analysis. The SUIF [22] parallelizing compiler
uses a simple heuristic based on the product of statements
per loop iteration and number of loop iterations to decide
whether a parallelizable loop should be scheduled to be ex-
ecuted in parallel. In contrast, Tournavitis et al. [21] use a
machine learning based heuristic, which incorporates dy-
namic program features collected in a separate profiling
stage, to decide if and how a potentially parallel loop should
be scheduled across multiple processors.

ML in Compiler Optimization. Machine learning has been
used to solve a wide range of problems, from the early suc-
cessful work of selecting compiler flags for sequential pro-
grams, to recent works on scheduling and optimizing par-
allel programs on heterogeneous multi-cores. Some works
for machine learning in compilers look at how, or if, a com-
piler optimization should be applied to a sequential program.
Some of the previous studies build supervised classifiers to
predict the optimal loop unroll factor [13, 20] or to determine
whether a function should be inlined [3, 23]. These works
target a fixed set of compiler options, by representing the
optimization problem as a multi-class classification problem
where each compiler option is a class. Evolutionary algo-
rithms like generic search are often used to explore a large
design space. Prior works [1, 2, 4] have used evolutionary
algorithms to solve the phase ordering problem (i.e. in which
order a set of compiler transformations should be applied).
Machine Learning and Parallelization. Most relevant to

the work presented in this paper is the approach of Fried
et al. [7]. Similar to our approach, Fried et al. train a su-
pervised learning algorithm on code hand-annotated with
OpenMP parallelization directives in order to approximate
the parallelization that might be produced by a human expert.
However, we do not rely solely on OpenMP annotations, but
we complement our training set with substantially richer
data obtained from an aggressively configured parallelizing
compiler. While Fried et al. focus on the comparative perfor-
mance of different ML algorithms, we contribute a practical
parallelization assistant capable of ranking loop candidates
in their order of merit. Through this we directly enhance
programmer productivity in an ML-assisted environment.
Similarly to our approach, Hayashi et al. [8] extracts various
program features during compilation for use in a supervised
learning prediction model. However, its aim is the optimal
runtime selection of CPU vs. GPU execution and it is limited

8

“It Looks Like You’re Writing a Parallel Loop” AI-SEPS ’19, October 22, 2019, Athens, Greece

Table 7. SNU NPB benchmark parallelization reports. The left part of the table shows execution times of serial, OpenMP
and partially parallelized (critical) versions. The partially parallelized versions have only several critical (top ranked) loops
parallelized. The right hand part of the table shows the number of top-ranked loops one needs to parallelize in order to reach
the critical performance. The Profile column gives the reference number a profiler requires. The total lines of code (LOC) in
the loops are written down as underscript. In most cases, ML based models converge to the critical performance faster than a
profiler based approach (highlighted with green). Red cells show the cases where a profiler outperforms our assistants.

Bench. Bench. Runtime, sec Speedup, times Loops NumberLOC
Serial OpenMP Critical OpenMP Critical Profile SVC MLP RFC AdaBoost DT

BT 158.76 57.36 56.57 2.77 2.81 66122 86392 44088 55105 33061 55105
CG 69.38 19.77 25.06 3.51 2.77 3330 2118 16 16 16 16
DC 698.82 254.29 698.82 2.75 1.00 ∞ ∞ ∞ ∞ ∞ ∞

EP 86.35 35.40 35.07 2.44 2.46 145 145 145 145 145 145
FT 36.81 12.13 14.69 3.03 2.51 9338 4187 3140 4187 9338 5193
IS 4.75 1.35 4.63 3.53 1.03 ∞ ∞ ∞ ∞ ∞ ∞

LU 115.46 55.00 140.53 2.10 0.82 ∞ ∞ ∞ ∞ ∞ ∞

MG 5.20 3.58 3.94 1.45 1.32 343 343 343 343 343 343
SP 86.65 65.19 62.90 1.33 1.38 3801 3801 ∞ 3801 3801 201257
UA 71.82 78.56 189.66 0.91 0.38 19882 30918 30508 19861 22883 10579

to programs written in Java using the parallel stream APIs
that was introduced in version 8.

7 Summary & Conclusions
In this paper we contribute a methodology and tool for paral-
lelization assistance. We acknowledge that parallelization is
a complex process where the human expert still has a major
role to play. We aim to assist the human experts by guid-
ing them directly towards the most interesting loops, thus
delivering savings for this costly human resource. We have
developed a novel machine learning based approach to pre-
dicting whether or not a loop is parallelizable. We combine
this prediction with traditional profiling information and de-
velop a ranking function that prioritizes low-risk, high-gain
loop candidates, which are presented to the user.
We have evaluated our parallelization assistant against

the sequential C implementations of the SNU NPB suite.
We show that our assistant recognizes parallelizable loops
more aggressively than conservative parallelizing compilers.
We also show that our parallelization assistant can increase
programmer productivity. Our experiments confirm, that
equipped with our assistant, a programmer is required to
examine and parallelize substantially fewer loops to achieve
performance levels comparable to those of the reference
OpenMP implementations of the benchmarks.
Our work has demonstrated that there is scope for ma-

chine learning based tool support in parallelization despite
its inherent lack of safety. By assisting human program-
mers rather than replacing them, machine learning tech-
niques have the potential to deliver productivity gains be-
yondwhat is possible by relying on traditional parallelization
approaches alone.

Acknowledgements
This work was supported by grant EP/L01503X/1 for the
University of Edinburgh School of Informatics Centre for
Doctoral Training in Pervasive Parallelism. We would like
to thank Artemiy Margaritov and Kuba Kaszyk for their
valuable feedback on earlier drafts of this paper. Finally,
we would like to thank the anonymous reviewers for their
comments and suggestions.

References
[1] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey,

Steven W. Reeves, Devika Subramanian, Linda Torczon, and Todd Wa-
terman. 2004. Finding Effective Compilation Sequences. In Proceedings
of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’04). ACM, New York, NY, USA,
231–239. https://doi.org/10.1145/997163.997196 8

[2] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano,
Sameer Kulkarni, and John Cavazos. 2017. MiCOMP: Mitigating the
Compiler Phase-Ordering Problem Using Optimization Sub-Sequences
and Machine Learning. ACM Trans. Archit. Code Optim. 14, 3, Article
29 (Sept. 2017), 28 pages. https://doi.org/10.1145/3124452 8

[3] J. Cavazos and M. F. P. O’Boyle. 2005. Automatic Tuning of Inlining
Heuristics. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing. IEEE Computer Society, Washington, DC, USA,
14–14. https://doi.org/10.1109/SC.2005.14 8

[4] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves,
Devika Subramanian, Linda Torczon, and Todd Waterman. 2005.
ACME: Adaptive Compilation Made Efficient. In Proceedings of the
2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’05). ACM, New York, NY, USA,
69–77. https://doi.org/10.1145/1065910.1065921 8

[5] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-
Standard API for Shared-Memory Programming. IEEE Comput. Sci.
Eng. 5, 1 (Jan. 1998), 46–55. https://doi.org/10.1109/99.660313 2

[6] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The
Program Dependence Graph and Its Use in Optimization. ACM Trans.
Program. Lang. Syst. 9, 3 (July 1987), 319–349. https://doi.org/10.1145/
24039.24041 3

9

https://doi.org/10.1145/997163.997196
https://doi.org/10.1145/3124452
https://doi.org/10.1109/SC.2005.14
https://doi.org/10.1145/1065910.1065921
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041

AI-SEPS ’19, October 22, 2019, Athens, Greece Aleksandr Maramzin, Christos Vasiladiotis, Roberto Castañeda Lozano, Murray Cole, and Björn Franke

[7] Daniel Fried, Zhen Li, Ali Jannesari, and Felix Wolf. 2013. Predicting
Parallelization of Sequential Programs Using Supervised Learning. In
Proc. of the 12th IEEE International Conference on Machine Learning
and Applications (ICMLA), Miami, FL, USA. IEEE Computer Society,
Miami, FL, USA, 72–77. https://doi.org/10.1109/ICMLA.2013.108 8

[8] Akihiro Hayashi, Kazuaki Ishizaki, Gita Koblents, and Vivek Sarkar.
2015. Machine-Learning-based Performance Heuristics for Runtime
CPU/GPU Selection. In Proceedings of the Principles and Practices of
Programming on The Java Platform (PPPJ ’15). ACM, New York, NY,
USA, 27–36. https://doi.org/10.1145/2807426.2807429 8

[9] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2013. An introduction to statistical learning : with applications in R.
Springer, Heidelberg, Germany. https://doi.org/10.1007/978-1-4614-
7138-7 3

[10] Nicklas Bo Jensen and Sven Karlsson. 2017. Improving Loop Depen-
dence Analysis. ACM Trans. Archit. Code Optim. 14, 3, Article 22 (Aug.
2017), 24 pages. https://doi.org/10.1145/3095754 2

[11] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. 3

[12] Per Larsen, Razya Ladelsky, Jacob Lidman, Sally A. McKee, Sven Karls-
son, and Ayal Zaks. 2012. Parallelizing More Loops with Compiler
Guided Refactoring. In Proceedings of the 2012 41st International Con-
ference on Parallel Processing (ICPP ’12). IEEE Computer Society, Wash-
ington, DC, USA, 410–419. https://doi.org/10.1109/ICPP.2012.48 1

[13] H. Leather, E. Bonilla, and M. O’Boyle. 2009. Automatic Feature
Generation for Machine Learning Based Optimizing Compilation.
In 2009 International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, Washington, DC, USA, 81–91. https:
//doi.org/10.1109/CGO.2009.21 8

[14] Stanislav Manilov, Christos Vasiladiotis, and Björn Franke. 2018. Gen-
eralized Profile-guided Iterator Recognition. In Proceedings of the 27th
International Conference on Compiler Construction (CC 2018). ACM,
New York, NY, USA, 185–195. https://doi.org/10.1145/3178372.3179511
2, 3

[15] Aleksandr Maramzin. 2019. Machine Learning Based Parallelization
Assistant. The University of Edinburgh. https://github.com/av-
maramzin/PParMetrics 3

[16] S. Midkiff. 2012. Automatic Parallelization: An Overview of Fundamental
Compiler Techniques. Morgan & Claypool, San Rafael, CA, USA. https:
//ieeexplore.ieee.org/document/6813266 1

[17] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting Good
Probabilities with Supervised Learning. In Proceedings of the 22nd
International Conference on Machine Learning (ICML ’05). ACM, New
York, NY, USA, 625–632. https://doi.org/10.1145/1102351.1102430 3

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830. 3

[19] Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance Charac-
terization of the NAS Parallel Benchmarks in OpenCL. In Proceedings
of the 2011 IEEE International Symposium onWorkload Characterization
(IISWC ’11). IEEE Computer Society, Washington, DC, USA, 137–148.
https://doi.org/10.1109/IISWC.2011.6114174 2

[20] M. Stephenson and S. Amarasinghe. 2005. Predicting unroll factors
using supervised classification. In International Symposium on Code
Generation and Optimization. IEEE Computer Society, Washington,
DC, USA, 123–134. https://doi.org/10.1109/CGO.2005.29 8

[21] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P.
O’Boyle. 2009. Towards a Holistic Approach to Auto-parallelization:
Integrating Profile-driven Parallelism Detection and Machine-learning
Based Mapping. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09). ACM,
New York, NY, USA, 177–187. https://doi.org/10.1145/1542476.1542496
8

[22] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P.
Amarasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei
Liao, Chau-Wen Tseng, Mary W. Hall, Monica S. Lam, and John L.
Hennessy. 1994. SUIF: An Infrastructure for Research on Parallelizing
and Optimizing Compilers. SIGPLAN Not. 29, 12 (Dec. 1994), 31–37.
https://doi.org/10.1145/193209.193217 8

[23] Peng Zhao and José Nelson Amaral. 2004. To Inline or Not to Inline?
Enhanced Inlining Decisions. In Languages and Compilers for Parallel
Computing, Lawrence Rauchwerger (Ed.). Springer, Berlin, Heidelberg,
405–419. https://doi.org/10.1007/978-3-540-24644-2_26 8

10

https://doi.org/10.1109/ICMLA.2013.108
https://doi.org/10.1145/2807426.2807429
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1145/3095754
https://doi.org/10.1109/ICPP.2012.48
https://doi.org/10.1109/CGO.2009.21
https://doi.org/10.1109/CGO.2009.21
https://doi.org/10.1145/3178372.3179511
https://github.com/av-maramzin/PParMetrics
https://github.com/av-maramzin/PParMetrics
https://ieeexplore.ieee.org/document/6813266
https://ieeexplore.ieee.org/document/6813266
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1109/IISWC.2011.6114174
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1145/1542476.1542496
https://doi.org/10.1145/193209.193217
https://doi.org/10.1007/978-3-540-24644-2_26

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Contributions

	2 Predicting Parallel Loops
	2.1 Loop Analysis & Feature Extraction
	2.2 Feature Selection
	2.3 Model & Hyper-Parameter Selection
	2.4 Training Data & ML Model Training

	3 ML Predictive Performance
	3.1 Overall Model Performance
	3.2 Model Performance Within Assistant

	4 Parallelization Assistant
	4.1 Comparison to Static Analysis

	5 Assistant Evaluation
	6 Related Work
	7 Summary & Conclusions
	References

