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ABSTRACT

We present an exact approach to the General Offset Assign-
ment problem arising in the domain of address code gen-
eration for application specific and digital signal processors.
General Offset Assignment is composed of two subproblems,
namely to find a permutation of variables in memory and to
select a responsible address register for each access to one
of these variables. Our method is a combination of estab-
lished techniques to solve both subproblems using integer
linear programming. To the best of our knowledge, it is the
first approach capable of solving almost all instances of the
established OffsetStone benchmark set to global optimality
within reasonable time. We provide a first comprehensive
evaluation of the quality of several state-of-the-art heuris-
tics relative to the optimal solutions.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—code gen-
eration, compilers, Optimization; G.1.6 [Mathematics of

Computing]: Optimization—Integer programming

Keywords

Compiler optimization, digital signal processors, application
specific processors, address code generation, offset assign-
ment, integer programming, branch-and-cut

1. INTRODUCTION
Indirect addressing is a common way to reference memory

operands of instructions where the address of an operand is
not passed explicitly but using a register. One particular
form of indirect addressing interprets the content of a reg-
ister as a base address that may then be combined with a
further immediate offset. This is particularly useful, e.g., for
accesses to an array where the register may hold its starting
address and the offset specifies an element to be referenced.
However, addressing modes using an immediate offset re-
quire a wide instruction word since the offset operand needs
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to be passed directly. While this is usually no restriction
for general purpose processors, specialized designs such as
application-specific processors (ASIPs) and (older) digital
signal processors (DSPs) frequently do not support arbitrary
offsets in order to save silicon area. The respective address
of an operand then needs to be explicitly present in one of
the processors address registers (ARs). At the same time, to
limit the drawbacks of this restriction, such processors usu-
ally provide an address generation unit (AGU). The AGU
permits modifications to an AR to be performed in the same
clock cycle as another instruction referencing the AR. For
example, an address can be used to access an operand for
a multiplication and be incremented afterwards at no extra
cost. However, AGU instructions implicitly encode the re-
spective modification so that only small ranges r of in- or
decrements are possible. In fact, many ASIPs and DSPs
have small instruction width and even only support autoin-
or decrements by a single memory word, i.e., r = 1 [14, 11].

In a way, one can consider the complexity of indirect ad-
dressing to have been moved from hardware to software for
processors with restricted offsets. In the absence of support
for arbitrary offsets, address computation overhead may re-
sult from two main issues. An inappropriate storage layout
may lead to a large number of additional explicit address
arithmetic instructions for ‘jumps’ to addresses that have a
distance larger than r. Further, if the processor provides
multiple ARs, a suboptimal choice of the ARs responsible
for particular accesses may result in avoidable immediate
AR loads and, again, additional arithmetic is needed. How-
ever, compilers may freely choose the stack layout for local
variables of a function and the AR responsible for a particu-
lar access to a variable. Since address calculations make up a
significant part of machine instructions, optimizing these de-
cisions may considerably reduce the code size and speed up
the program at the same time. Indeed, various experimental
studies [11, 12, 14] show that optimized configurations lead
to significant savings in practice.

1.1 Motivating Example
During compilation, the instruction scheduling phase de-

termines the access sequence to local stack variables. It can
be extracted by simply concatenating the referenced vari-
ables of each instruction c = a op b in the order a b c. For
example, the program fragment in the left of Fig. 1 refers
to the variables V = {a, b, c, d, e, f, g} that are accessed in
the order S = a b c g c f c e c c f d. Tab. 1 shows pseudo
machine code for this program fragment and three potential
stack layouts A, B, and C of V. Layout A refers to the
order of first use (OFU) of the variables in S. On a pro-



c = a + b;

f = g - c;

c = c - e;

d = c * f;
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Figure 1: A sample code fragment (a), and an illustration
of two ARs referencing memory locations of variables (b).

Instruction AR0
LDAR AR0, &a &a

LOAD *(AR0)+ &b
ADD *(AR0)+ &c

STOR *(AR0)+ &g
LOAD *(AR0)- &c
SUB *(AR0)

ADAR AR0,2 &f
STOR *(AR0)

SBAR AR0,2 &c
LOAD *(AR0)
ADAR AR0,3 &e

SUB *(AR0)
SBAR AR0,3 &c

STOR *(AR0)
ADAR AR0,2 &f

MUL *(AR0)
ADAR AR0,2 &d
STOR *(AR0)

A = a b c g f e d

Instruction AR0
LDAR AR0, &a &a

LOAD *(AR0)+ &b
ADD *(AR0)

ADAR AR0,2 &c
STOR *(AR0)- &g
LOAD *(AR0)+ &c

SUB *(AR0)+ &f
STOR *(AR0)- &c

LOAD *(AR0)
ADAR AR0,3 &e
SUB *(AR0)

SBAR AR0,3 &c
STOR *(AR0)+ &f

MUL *(AR0)+ &d
STOR *(AR0)

B = a b g c f d e

Instruction AR0 AR1
LDAR AR0, &a &a

LOAD *(AR0)+ &b
ADD *(AR0)+ &c

STOR *(AR0)
LDAR AR1, &g &g
LOAD *(AR1)- &e

SUB *(AR0)+ &f
STOR *(AR0)- &c

LOAD *(AR0)
SUB *(AR1)
STOR *(AR0)+ &f

MUL *(AR0)+ &d
STOR *(AR0)

C = a b c f d e g

Table 1: Pseudo machine codes for the code fragment from
Fig. 1 assuming different memory layouts A, B and C and
either one (A and B) or two (C) available address registers.

cessor with only a single AR this layout would require six
explicit address arithmetic instructions (ADAR and SBAR). An
optimized layout (B) already reduces the necessary num-
ber of such instructions to three by increasing the use of
autoin-/decrement instructions (*(ARx)+ and *(ARx)-). If
the memory layout is optimized for a use of two ARs (C)
and also an optimal AR assignment is computed, it becomes
possible to cover the access sequence even without any ex-
plicit address arithmetic at all. Assuming the cost of an
immediate AR load and the cost of an address arithmetic
instruction to be both one, the optimal total cost with one
AR would be four, with two ARs it would be two. Notably,
layout A and B have no register assignment that leads to a
total cost smaller than three with two or more ARs.

1.2 Problem Statement and Related Work
Given an access sequence of program variables, k ≥ 1

ARs and an autoin-/decrement range of one, the problem
to minimize the address computation overhead is called the
General Offset Assignment (GOA) problem. As already in-
dicated, GOA consists of two subtasks. On the one hand,
a memory layout of the program variables needs to be de-
termined and on the other, it must be decided which AR
shall be used to perform each of the accesses to these vari-
ables. The first subproblem is the ‘real’ offset assignment
since it determines the distances between program variables
in memory. The second task is called Address Register As-
signment (ARA). If there is only a single AR, ARA is not
necessary and the problem is then called the Simple Offset
Assignment (SOA) problem which is already NP-hard [17].

Offset Assignment was first considered by Bartley [3] in

1992. He proposed to model the variable relationships con-
tained in an access sequence by an access graph G = (V,E).
The set of vertices V corresponds to the variables and there
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Figure 2: Access graph for the code fragment from Fig. 1.

is an edge e = {u, v} ∈ E with weight w(e) if the variables
u and v appear subsequently in the access sequence for w(e)
times. Fig. 2 shows the access graph that corresponds to the
sample code fragment shown in Fig. 1.

Bartley recognized a close relationship of SOA to the Max-
imum Weight Hamiltonian Path (MWHP) problem and de-
veloped a first greedy heuristic to solve it. In subsequent
research, Liao [17] showed that SOA is rather equivalent to
a Maximum Weight Path Cover (MWPC) problem instead
and gave a formal proof of its strong NP-hardness. Based
on these results, he proposed a simpler and faster heuristic
producing solutions with the same quality as Bartley’s and
also a first exact Branch-and-Bound procedure. A series of
SOA heuristics were developed subsequently and experimen-
tally evaluated by Leupers in 2003 [14]. Leupers introduced
a standard reference benchmark set called OffsetStone that
has been frequently used for experiments since then. Re-
cently, the first exact approach to SOA capable to solve all
instances from OffsetStone to optimality in reasonable time
was presented in [12] and the heuristics known so far were
broadly evaluated in relation to optimal solutions for the
first time. However, to the best of our knowledge, this has
never been carried out for GOA algorithms on a large bench-
mark set like OffsetStone prior to this article.

In practice, GOA is often solved by first partitioning the
set of program variables w.r.t. the available ARs and then
solving a SOA problem for each of the ARs. This strategy
allows to reuse available SOA algorithms but inherently con-
strains all accesses to a particular variable to be performed
by the same AR. This may preclude optimal results as is ex-
tensively discussed by Huynh et al. [11]. They also evaluate
different combinations of ARA and SOA algorithms. The
approach by Sugino et al. [25] performs best in their experi-
ments. Their method partitions the variables iteratively by
applying in each iteration a min-cut-based heuristic algo-
rithm that repeatedly invokes a SOA algorithm to estimate
the quality of the partition. The SOA algorithm iteratively
removes edges from the access graph until a variable order-
ing can be trivially derived.

Besides his algorithms for SOA, Liao [17] also proposed a
heuristic for GOA which however needed some manual pa-
rameter specification. In 1997, Leupers and Marwedel [16]
proposed a different heuristic that outperforms Liao’s on
their random test instances. Their method was also used
to generate initial populations for a genetic GOA-algorithm
presented one year later by Leupers and David [15] that,
however, also assigns all accesses to a particular variable to
the same AR. Both articles further discuss the integration
of modify registers (MRs) present in many ASIPs and DSPs
into the optimization problem. MRs store offsets which may
then be added to or subtracted from the address held by an
AR at no extra costs. This can mitigate the address compu-



tation overhead especially if certain distances between vari-
ables occur frequently. Loading MRs with new offsets how-
ever also requires additional instructions. Ozturk et al. [20]
provided a first ILP approach to GOA which can also be ex-
tended to deal with MRs. However, their model has flaws,
e.g., it does not account for AR initialization costs and allows
any present AR to be moved in parallel with any instruction
regardless whether the instruction references the respective
AR or not. This is hardly imaginable in hardware. We dis-
cuss all issues in detail in this paper’s appendix. Apart from
these, the formulation leads to critical numbers of variables
and constraints and does neither exploit the combinatorial
structure nor symmetries inherent to the problem. The au-
thors reported relatively high running times that do not sug-
gest to use their method in a production compiler.

In case that a memory layout of the variables is already
given, an optimal assignment of accesses to registers can be
computed in polynomial time. This was shown by Gebo-
tys [9, 10] who provided a minimum-cost circulation algo-
rithm that we will discuss in more detail in Sect. 3.1.

Specialized and integrated variants of the problem were
also subject to research. Lorenz et al. [18] consider offset
assignment in the context of specialized DSPs with wide
memory and where accesses do not refer to single memory
words but to all variables of a previously specified group
simultaneously. Eriksson [8] proposed a dynamic program-
ming algorithm to integrate scheduling, AR and offset as-
signment. However, the algorithm is highly time and mem-
ory consuming and could solve only small instances. A dif-
ferent idea named variable coalescing is to share storage lo-
cations among variables whose lifetimes do not overlap. Ot-
toni et al. [19] presented a first heuristic which was followed
by another one and an ILP formulation by Salamy and Ra-
manujam [23, 24]. However, for the exact approach again
the instances solved had to be restricted to sizes of about 30
variables due to the running time of the solver.

Further research deals with address code optimizations
by computation or operand reordering. Rao and Pande [22]
apply algebraic transformations to expression trees in order
to find a least-cost access sequence. Similarly, Atri et al. [2]
use commutative transformations of the access pattern to
obtain better solutions with existing heuristics. Choi and
Kim [4] perform code transformations and reschedule parts
of the code as a preprocessing step to offset assignment.

1.3 Our Contribution
This paper presents new exact integer linear programming

(ILP) formulations and algorithms to solve the GOA prob-
lem to optimality. They deliver optimal solutions for nearly
all instances of the standard OffsetStone benchmark set [14]
for varying numbers of ARs. In contrast to existing exact
approaches, our algorithms solve the majority of instances
within only a few milliseconds of CPU time and also model
the autoin-/decrement capability of processors accurately.
Hence, we are able to provide a first comprehensive evalua-
tion of the quality of state-of-the-art GOA heuristics using
the OffsetStone benchmark.

Due to the complexity of the problem, one cannot ex-
pect an algorithm that is capable to solve any instance to
optimality in acceptable time. Nonetheless, based on the
large set of instances we used in our experiments, our exact
method is practical whenever a particular program is com-
piled infrequently and can be combined with a time limit

and a fallback heuristic to deal with very large instances.
This could be a promising strategy in cases where code size
and runtime performance is critical like, e.g., for firmware
to be stored in a small read-only memory.

As a side effect, we revised the ILP formulation by Ozturk
et al. [20] and reimplemented several heuristics to incorpo-
rate them into our experiments. The results reveal signifi-
cant quality discrepancies between heuristics that subdivide
GOA into ARA and SOA and those approaches that derive
a memory layout and solve ARA optimally for that layout.

The rest of this paper is organized as follows. We discuss
the two arising subproblems of GOA and optimal solution
techniques for them in Sect. 2 and Sect. 3. Based on this,
we present novel integer programming formulations and al-
gorithms to solve the General Offset Assignment Problem
to optimality in Sect. 4. In Sect. 5, a short overview on our
extensive experiments is given and Sect. 6 finally presents
our results. We conclude on this contribution in Sect. 7.

2. OPTIMAL OFFSET ASSIGNMENT
The most important aspect regarding offset assignments

is that memory layouts correspond to variable permutations
which might be, e.g., modeled by Hamiltonian paths or path
covers. For SOA it has been shown that the problem can be
reduced to a Maximum Weight Path Cover (MWPC) [17],
Maximum Weight Hamiltonian Path (MWHP) [3] or Max-
imum Weight Hamiltonian Cycle (MWHC) [12] problem.
Interpretations of an optimal SOA memory layout for the
example from Fig. 1 as MWPC, MWHP and MWHC are
depicted in Fig. 3. Path covers are collections of disjoint
paths and isolated vertices (considered as paths of length
zero, like the vertex e in the left of Fig. 3) covering all ver-
tices of the graph. Any concatenation of these paths using
additional edges yields a Hamiltonian path that, interpreted
as a memory layout, is then a feasible offset assignment. Us-
ing an artificial vertex as a unique splitting point, one may
also identify a Hamiltonian path by computing a Hamilto-
nian cycle and removing the vertex again afterwards.
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Figure 3: A path cover (left), and one possible correspond-
ing Hamiltonian path (middle) created by appending addi-
tional edges (dashed). On the right, the path is identified as
part of a Hamiltonian cycle using an artificial vertex z.

Due to the additional task of address register assignment,
we could not find a way to model optimal solutions to GOA
correctly by assigning static costs to the edges of an access
graph. However, our approach still relies on the idea to
model permutations by paths or tours.

2.1 Modeling Permutations
As discussed in [12] the main issue and commonality be-

tween Hamiltonian paths and path covers is that solutions to
these problems must be free of cycles. This is also reflected
in the corresponding integer programming formulations. At
this point, we are just interested in how to model feasible
solutions, so we omit edge weights and objective functions
in the following ILP model descriptions.



Let G = (V,E) be an access graph and let xu,v ∈ {0, 1}
be a decision variable for each edge {u, v} ∈ E expressing
whether it is selected or not. For ease of notation, define
x(S) =

∑
{u,v}∈S

xu,v, i.e., x(S) is the sum of the variables
associated to any edge-subset S ⊆ E. Then the set of feasi-
ble solutions to a path cover formulation can be stated as:

∑
{u,v}∈E

xu,v ≤ 2 ∀ v ∈ V

x(C) ≤ |C| − 1 ∀ cycles C ⊆ E
xu,v ∈ {0, 1} ∀ {u, v} ∈ E

The first inequalities force each vertex to have at most two
incident edges in the cover. The cycle inequalities exclude
any solutions that contain cycles from the feasible set.

In order to solve the problem by finding a Hamiltonian
path instead, we create a complete graph GC = (VC , EC)
from the access graph G = (V,E) as follows. We set VC =
V ∪ {z} where z is an additional vertex like in Fig. 3 and
EC = {{u, v} | u, v ∈ VC}. Computing a Hamiltonian cycle
in GC and removing the vertex z from the cycle yields the
desired Hamiltonian path in G [12]. Let E(W ) = {{u, v} ∈
EC | u, v ∈ W } for any W ⊆ VC . Then the set of Hamil-
tonian cycles can be expressed exactly as when stating a
Traveling Salesman Problem (TSP):

∑
{u,v}∈E

xu,v = 2 ∀ v ∈ VC

x(E(W )) ≤ |W | − 1 ∀ ∅ 6= W ( VC

xu,v ∈ {0, 1} ∀ {u, v} ∈ EC

Compared to the path cover formulation, the equations
force any vertex to be adjacent to exactly two other vertices.
The inequalities are called subtour elimination constraints
(SECs) [5]. They exclude solutions containing any cycle
w.r.t. the vertex sets W and VC \W from the feasible set.

The numbers of possible cycles C ⊆ E as well as vertex
sets W ⊆ VC are exponential with respect to the size of the
respective base set. One would therefore usually not add the
cycle inequalities or the SECs to a ILP solver from the begin-
ning. Instead, one could separate them, i.e., check whether
computed linear program (LP) solutions violate these con-
straints and then add them only when necessary. When
combined with traditional Branch-and-Bound, such a solu-
tion strategy is usually referred to as ‘Branch-and-Cut’ [7].
We do not want to go into detail here but shortly address one
important aspect. If we consider a minimization problem,
feasible solutions provide upper bounds on the optimal ob-
jective value, and LP solutions provide lower bounds. Strong
inequalities are therefore important to prove optimality of
a known solution. Similarly, the addition of (previously vi-
olated) inequalities successively strengthens the solved LPs
which may lead to better lower bounds. Separation of the
cycle inequalities and SECs can both be performed in poly-
nomial time. However, in experiments with our GOA formu-
lations (which we present in Sect. 4), the Hamiltonian Path
formulation performed much better concerning the provided
lower bounds. Further, it permits the application of several
strong inequalities known for the TSP which in turn allow
for a much better separation of fractional LP solutions as
is discussed in [12]. However, the advantage over the path
cover formulation comes at the cost of more variables in-
duced by completing the access graph. Nevertheless, in our
experiments this strategy is superior at least for instances
with up to a few hundred vertices.

3. OPTIMAL ADDRESS REGISTER

ASSIGNMENT
Suppose for now that a memory layout L of the program

variables V has already been fixed and we are now asked to
compute an optimal ARA for k address registers w.r.t. L
and the input access sequence S.

3.1 Gebotys’ Circulation Technique
An exact solution to this problem has been proposed by

Gebotys [9, 10]. It is based on a minimum-cost circulation
network that contains a vertex for each access in S and a di-
rected arc for each pair of accesses u, v such that v succeeds u
in S. As a small example, let V = {a, b, c, d}, S = a d c a b c
and assume L = d - a - c - b (which is optimal for k ≥ 2
ARs). After adding artificial ‘source’ (s) and ‘sink’ (t) ver-
tices, the associated circulation network looks as depicted in
Fig. 4. The cost of an arc between two accesses is zero if and
only if the two associated variables are equal or adjacent in
L. Otherwise the cost cA of an address arithmetic instruc-
tion is associated with the arc (drawn dashed in Fig. 4). All
costs of arcs leaving s or entering t are zero and the arc (t, s)
has the cost cL of an immediate address register load.
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0 1 cA
1 k cL

Figure 4: Circulation network assuming L = d - a - c - b.

Each vertex is constrained to receive and supply one unit
of flow and the capacity of all arcs is one, except for the arc
(t, s) that has capacity k. Hence, the maximum possible flow
in this circulation network is k and each unit of flow leaving
s essentially delivers a path of accesses before it proceeds
to t. If the selection of these paths is based on a min-cost
criterion then each of the resulting paths can be interpreted
as an optimal series of accesses performed by an AR.

Minimum-cost circulations can be established in polyno-
mial time using either combinatorial algorithms (e.g. [26]) or
linear programming (solutions will be always integral) [13].
Let VS be the set of vertices associated with the accesses
in sequence S. The circulation network N = (VN , A) is ob-
tained by setting VN = VS ∪ {s, t} and A to be the union of
the arc sets {(s, v) | v ∈ VS}, {(v, w) | v, w ∈ VS, v < w},
{(v, t) | v ∈ VS} and the arc (t, s). Let yu,v be a flow variable
for each arc (u, v) ∈ A and cu,v its associated cost. Gebotys’
LP formulation is then:

min
∑

(u,v)∈A

cu,vyu,v

s.t.
∑

(v,w)∈A

yv,w −
∑

(u,v)∈A

yu,v = 0 ∀ v ∈ VN

∑
(v,w)∈A

yv,w = 1 ∀ v ∈ VS

∑
(u,v)∈A

yu,v = 1 ∀ v ∈ VS

0 ≤ yu,v ≤ 1 ∀ (u, v) 6= (t, s) ∈ A
1 ≤ yt,s ≤ k

The restriction of the in- and out-degrees of all sequence-
vertices to one by the second and third constraints highlights
the aforementioned ‘path selection’ or ‘assignment problem’



property of this model. Actually, they make the preceding
flow conservation constraints obsolete for all vertices except
t since any unit of flow sent from s to satisfy the equations
must finally arrive at t and will then be sent back using the
circulation arc (t, s). Further, lower bounds on the flow on
out- (in-) arcs of the source (target) are not necessary since
the former (latter) must be satisfied due to the in- (out-)
degree equation of the first (last) access vertex.

3.2 An Equivalent Min-Cost Flow Model
Further inspection of the problem and basic results from

network flow theory allow for a simple transformation of this
model into a usual min-cost flow problem where the arc (t, s)
is removed. Its cost (the cost of an immediate AR load) can
be instead installed on every s-leaving arc. This yields the
same result that the cost is paid as soon a further register is
used to cover the access sequence. The restriction to not use
more than k registers (the former upper bound on the flow
over arc (t, s)) can be applied over the sum of all s-leaving
arcs instead. In this manner, the vertices s and t will be
a real source and sink, respectively. An optimal solution
(assuming cL = cA) to the example from Fig. 4 within the
transformed network and for k ≥ 2 ARs is depicted in Fig. 5.
It also illustrates that it is not necessarily optimal to assign
accesses to the same variable (here c) to the same AR.
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Figure 5: Optimal solution to the example from Fig. 4
shown in the min-cost flow representation of the problem.

After the transformation, all flow variables may be only
zero or one and still combinatorial algorithms as well as lin-
ear programming can be used in order to obtain integral
solutions in polynomial time. Assuming that the arc set A
now does not contain the arc (t, s) anymore, the IP formu-
lation of the transformed and reduced problem is:

min
∑

(u,v)∈A

cu,vyu,v

s.t.
∑

(v,w)∈A

yv,w = 1 ∀ v ∈ VS

∑
(u,v)∈A

yu,v = 1 ∀ v ∈ VS

∑
v∈VS

ys,v ≤ k

0 ≤ yu,v ≤ 1 ∀ (u, v) ∈ A

4. OPTIMAL GENERAL OFFSET

ASSIGNMENT
To solve GOA to global optimality, we need to find a mem-

ory layout that will allow us to create the best possible ARA.
The key observation that led to our exact approach is that

the objective function is the only part where the memory
layout influences the concrete ARA network problem to be
solved. The cost of an access transition (u, v) in the network
described in Sect. 3.2 is zero if and only if the variables as-
sociated with u and v are equal or neighbors in the memory
layout. Otherwise, a positive cost cA reflecting the overhead
of an additional address arithmetic instruction is assigned.

We now combine this insight with the approach to model
variable permutations from Sect. 2. Hence, we consider two
graphs. Firstly, a complete graph G = (V ∪ {z}, E) where
V is the set of program variables and z is an additional
vertex as described in Sect. 2. Also, we again associate edge
decision variables xu,v ∈ {0, 1} with the edges {u, v} ∈ E
that have no associated costs. Secondly, we have a network
N = (VN , A) with VN = VS ∪ {s, t} where VS is a vertex set
related to the accesses contained in the input sequence S,
just like in Sect. 3. Let AS = {(v, w) | v, w ∈ VS, v < w}
and A = AS ∪ {(s, v) | v ∈ VS} ∪ {(v, t) | v ∈ VS}. We again
use flow arc variables yu,v for each arc (u, v) ∈ A.

Since all access vertices in VS are instances of the variables
represented by the vertices V , we may define a corresponding
unique mapping σ : VS → V . For ease of reference, we fur-
ther split the set AS into A 6=

S = {(u, v) ∈ AS, σ(u) 6= σ(v)},
i.e., the set of arcs between accesses that do not refer to
the same associated variable and, analogously, the set A=

S .
Since G is undirected, the variables xu,v are only defined
for u < v. Slightly disregarding mathematical precision,
we write xσ(u),σ(v) when referring to the associated edge

decision variable of yu,v, (u, v) ∈ A 6=
S no matter whether

σ(u) < σ(v) or σ(u) > σ(v).

4.1 Quadratic Formulation
When continuing straightforwardly with the just intro-

duced relationships, we can now express the cost of an access
transition yu,v with (u, v) ∈ A 6=

S as (1−xσ(u),σ(v))cA. As al-
ready stated, the cost of each variable yu,v for (u, v) ∈ A=

S

is zero. Putting everything into a single model yields the
following formulation:

min
∑

(u,v)∈A
6=
S

(1− xσ(u),σ(v))cAyu,v +
∑

v∈VS

cLys,v

∑
{u,v}∈E

xu,v = 2 ∀ v ∈ V ∪ {z}

x(E(W )) ≤ |W | − 1 ∀ ∅ 6= W ( V ∪ {z}∑
(u,v)∈A

yu,v = 1 ∀ u ∈ VS

∑
(u,v)∈A

yu,v = 1 ∀ v ∈ VS

∑
v∈VS

ysv ≤ k

xu,v ∈ {0, 1} ∀ (u, v) ∈ E
yu,v ∈ {0, 1} ∀ (u, v) ∈ A

This integer program is quadratic in its objective func-
tion. We may linearize it using the standard linearization
approach. However, first we simplify. The term

min
∑

(u,v)∈A
6=
S

(1− xσ(u),σ(v))cAyu,v

can also be written as

min (
∑

(u,v)∈A
6=
S

yu,v −
∑

(u,v)∈A
6=
S

xσ(u),σ(v)yu,v)cA.

We then need |A 6=
S | new variables zu,v = xσ(u),σ(v)yu,v and

three linearization constraints for each of the new variables:

zu,v ≤ xσ(u),σ(v)

zu,v ≤ yu,v
zu,v ≥ xσ(u),σ(v) + yu,v − 1



After this transformation, the objective function becomes:

min
∑

(u,v)∈A
6=
S

cAyu,v −
∑

(u,v)∈A
6=
S

cAzu,v +
∑

v∈VS

cLys,v

4.2 Linear Formulation
Further inspection and the fact that there are only two

cases for each arc (u, v) ∈ A 6=
S , namely that it either has

the assigned cost cA or assigned cost zero, we found a way
to linearize the problem inherently, that is without generat-
ing any products that need a subsequent linearization. The
main idea is to replace every variable (arc) between two ac-

cesses yu,v, (u, v) ∈ A 6=
S by two new variables (arcs) y0

u,v and

y1
u,v reflecting the two mentioned cases. The set A 6=

S is there-
fore further split into the corresponding new arc sets A0

S and
A1

S. For every arc (u, v) ∈ A=
S , we keep the former variable

yu,v with zero cost as before. In the below IP formulation,
we also skip the superscript when referring to flow variables
disregarding their costs or if only one instance exists.

The new network N has now the arc set A = A0
S ∪ A1

S ∪
A=

S ∪ {(s, v) | v ∈ VS} ∪ {(v, t) | v ∈ VS}. The new objective
is of course to minimize the selected arcs with positive costs
assigned. This is a linear expression in the set of variables.
However, we now have to restrict the use of zero-cost arcs.
As before in the quadratic model, it should only be possible
to use them if the respective mapped variables are neighbors
in the access sequence. With the newly introduced variables
this can easily be enforced using the following constraints:

y0
u,v ≤ xσ(u)σ(v) ∀ (u, v) ∈ A0

S

Further, one may add also the following constraints to the
model, since there is never a reason to use the cost-assigned
arc in case that the variables are neighbors, i.e., the same
access transition could be done without cost:

y1
u,v ≤ 1− xσ(u)σ(v) ∀ (u, v) ∈ A1

S

However, this constraint will only have marginal impact on
the solution process, since such a decision is either way not
preferred due to the objective function.

The complete linear IP formulation is then:

min
∑

(u,v)∈A1

S

cAy
1
u,v +

∑
v∈VS

cLysv

∑
{u,v}∈E

xu,v = 2 ∀ v ∈ V ∪ {z}

x(E(W )) ≤ |W | − 1 ∀ ∅ 6= W ( V ∪ {z}∑
(u,v)∈A

yu,v = 1 ∀ u ∈ VS

∑
(u,v)∈A

yu,v = 1 ∀ v ∈ VS

∑
v∈VS

ysv ≤ k

y0
u,v ≤ xσ(u)σ(v) ∀ (u, v) ∈ A0

S

y1
u,v ≤ 1− xσ(u)σ(v) ∀ (u, v) ∈ A1

S

xu,v ∈ {0, 1} ∀ (u, v) ∈ E
yu,v ∈ {0, 1} ∀ (u, v) ∈ A

The number of variables is equal to the case of the quadratic
formulation since essentially for each (u, v) ∈ A 6=

S the prod-
uct variable zu,v is replaced by a second flow arc variable

y1
u,v. However, |A 6=

S | less constraints are needed.

4.3 The Branch-and-Cut Algorithms
We implemented Branch-and-Cut solvers for both the lin-

ear and quadratic formulation using CPLEX 12.1 [1] as the

underlying ILP solver. We disabled its internal presolver
but adopted all other default parameters. The optimization
starts by relaxing integrality and taking all inequalities ex-
cept the subtour elimination constraints (SECs) into account
when solving the first LP. For the SECs and for 2-Matching-
inequalities [21], we added exact separation procedures. Vi-
olation of the latter is checked whenever a fractional LP
solution did not violate any SEC. If violated inequalities are
found then they are added to the LP and it is solved again.
Otherwise, if no violation is found, a branching step takes
place, i.e., two new subproblems are created by fixing some
fractional variable once to zero and once to one. The selec-
tion of the variable to branch on is left to CPLEX.

The LP solutions obtained at the respective Branch-and-
Bound nodes will typically not be integral. Here, primal
heuristics play an important role. Their purpose is to try to
construct good feasible solutions by exploiting the current
LP solution and therefore to improve the upper bound on
the optimal objective function value. Our primal heuristic
makes use of the condition that we can compute an opti-
mal ARA for a given memory layout quickly. It follows
the general idea that variables with an LP value close to
one are likely to be part of a good or even optimal solu-
tion. In particular, we greedily construct a path cover by
selecting edges {u, v} iteratively based on the LP values of
their corresponding variables xu,v as long as this is feasi-
ble. We use only edges from the set E′ of edges where there
is at least one corresponding access transition in the flow
network N = (VN , A). The resulting paths are then con-
catenated to an offset assignment and then the network flow
problem from Sect. 3.2 is solved to find an optimal ARA for
the respective memory layout. We experimented with fur-
ther weight criteria and tie-breaking concepts based on the
flow variables but could not significantly improve over the
results of this rather simple algorithm.

1: function primalHeuristic(G = (V,E′), x, N = (VN , A))
2: Sort(E′, x) # Sort edges non-increasingly w.r.t. x
3: InitializeUnionFind(V )
4: n← |V |, m← |E′|
5: select← ∅, count← 0
6: for i = 1→ n do

7: deg(i)← 0 # Initialize degrees to zero

8: for i = 1→ m do

9: e = {u, v} ← E′[i]
10: if deg(u) < 2 and deg(v) < 2 and count < n
11: and (Find(u) 6= Find(v) or count = n− 1) then
12: select← select ∪ {e}, count← count+ 1
13: deg(u)← deg(u) + 1, deg(v)← deg(v) + 1
14: Union(u, v)

15: OA← ConcatenatePathCover(select)
16: ARA← MinCostFlow(N , OA)

If V is the set of program variables and |S| denotes the
length of the access sequence, then both formulations have
strictly less than |V|·(|V|−1)/2+|S|·(|S|−1) variables. The
number of constraints (after relaxing the SECs) is bounded
by |V|+ 2|S|+ |S| · (|S| − 1) Remarkably, all these numbers
are independent from the number of ARs available. The
more accesses in S coincide, the less (product or non-zero-
cost arc) variables and associated constraints are needed.
In contrast to that, the formulation by Ozturk et al. has
O(k ·V ·|S|+V2) variables and O(V3+k · |S| ·V2) constraints
(with larger constants) in the presence of k ARs.



5. EXPERIMENTAL SETUP

5.1 The OffsetStone Benchmark Set
The OffsetStone benchmark set consists of more than 3000

instances that have been extracted from 31 real-world ap-
plication codes written in ANSI C. They comprise access
sequences of lengths up to 3640 and referring to up to 1336
variables. Among them are computationally intensive pro-
grams (e.g., audio, video and image compression, Fourier
transformation) as well as control-dominated applications
(e.g., gzip). For details on how the instances were extracted,
we refer to the original paper [14]. For our experiments, we
only consider instances that consist of at least three program
variables, these are 2785 in total. We perform the experi-
ments once for 2, 4 and 8 ARs and assume the costs for
address arithmetic instructions cA and immediate AR loads
cR to be both equal to one.

5.2 Test System
Our experiments were run single-threaded with an Intel

Core i7-3770T processor (2.5 GHz) on a Debian Linux sys-
tem with 8 GB RAM, g++ 4.7.2 and optimization level -O2.
We measure the address computation overhead and average
solution CPU times of five runs of the algorithms summa-
rized in the following subsection.

5.3 Algorithms Included in the Evaluation
The following list summarizes the set of algorithms in-

cluded in our experiments. A suffix MCF denotes that an op-
timal ARA is computed using the min-cost-flow technique
(see Sect. 3.2) based on the respective memory layout. We
implemented it using the network simplex algorithm pro-
vided by LEMON C++ library [6]. Since in GOA-OFU-MCF

virtually no time is invested to create the memory layout, it
can be used as a rough reference for its running time. We
also reimplemented and fixed the ILP formulation of Ozturk
et al. using the same CPLEX solver as for our new Branch-
and-Cut algorithms.

• GOA-OFU-MCF: Creates a naive memory layout corre-
sponding to the order of first use. This layout is then
the basis for an optimal ARA. This can be seen as a
reference for the impact of the ARA subproblem.

• GOA-ITB-MCF: Uses the most successful SOA heuristic
SOA-INC-TB in [14, 12] to create a memory layout being
then the basis for an optimal ARA.

• GOA-SUGINO: The heuristic by Sugino et al. with the
improved cost function given in [25].

• GOA-LM: The GOA-heuristic presented in [16].

• GOA-GA: The genetic algorithm by Leupers and David [15]
with an increased population size of 100 individuals.

• GOA-OZTURK: Our revised (details are given in the ap-
pendix) ILP formulation by Ozturk et al. [20].

• GOA-QIP: Our new Branch-and-Cut solver using the
quadratic formulation from Sect. 4.1.

• GOA-IP: Like GOA-QIP but using the linear formulation
from Sect. 4.2.

Each OffsetStone instance consists of one or multiple ac-
cess sequences w.r.t. a particular set of variables. For algo-
rithms that explicitly subdivide offset assignment and ARA,
the latter case results in multiple ARA problems to be solved.

Further, if the access sequences refer to disjoint subsets of
program variables this is exploited and the exact solvers were
started on the respective subsets of variables. The exact
solvers were given a time limit of 10 seconds per call.

6. RESULTS
Fig. 6 shows the offset assignment costs relative to the

optimal solution (left) and the running times (right) for all
tested AR configurations. For each benchmark, we accumu-
lated the running times and offset assignment costs for all
instances of the benchmark that were solved to optimality by
both GOA-IP and GOA-QIP. The number of these is given be-
hind the benchmark names on the abscissa. The numbers of
instances where one of the exact solvers timed out are listed
in Tab. 2. With GOA-IP we could solve more instances than
with GOA-QIP and, except for one single instance, GOA-QIP
did not complete whenever GOA-IP did not either. However,
if both algorithms timed out, there were cases where GOA-

QIP provided better lower bounds, i.e., was closer to prove
optimality of known solutions. Since the integer programs of
GOA-OZTURK become very large (in the number of variables
and, especially, constraints), it was able to solve less than
half of the instances. Fig. 7-8 show the distribution of time-
outs w.r.t. to the number of variables and access sequence
lengths, respectively. We observe only a weak relationship
between instance sizes and timeouts for our new solvers.

#ARs GOA-IP GOA-QIP GOA-OZTURK

2 41 (1.48%) 52 (1.87%) 1610 (56.00%)
4 54 (1.94%) 69 (2.48%) 1742 (60.59%)
8 54 (1.94%) 78 (2.80%) 1887 (67.76%)

Table 2: Number of instances timed out after 10 seconds.

One major result of our experiments is that the gap be-
tween heuristic GOA solutions and optima is significant for
many instances. This is in contrast to the results concerning
SOA [12]. However, this is not surprising since the addi-
tional task of ARA largely increases the combinatorial com-
plexity of the problem and adds a lot of symmetry. Another
major result is that heuristics that try to find a good memory
layout and perform an optimal ARA afterwards are clearly
superior to those that perform ARA first or intertwined with
memory layout computations. This becomes apparent since
even a trivial layout with optimal ARA (GOA-OFU-MCF) per-
forms often better. It is not clear whether this is mainly
due to the inherent restriction to perform each access to a
particular variable by the same AR since the heuristics eval-
uated have other weaknesses. For example, in the variable
partitioning phase of GOA-SUGINO, there seems to be a sig-
nificant discrepancy between the estimation delivered by the
improved cost function [25] and the real cost of a solution.
However, using the primary cost function given in the arti-
cle, the heuristic would have timed out on many instances.
GOA-LM uses all k available registers as soon as the access
graph has at least k edges which might lead to avoidable
immediate AR loads especially for small instances. Since
OffsetStone comprises a lot of small instances, this problem
is also apparent in the results for GOA-GA that uses GOA-LM

for a starting solution and could not improve much on that
with the parameters given in [15]. As a further matter, nei-
ther of these algorithms further subdivides the search space
if an access graph has multiple connected components.
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Figure 6: Relative offset assignment cost (left) and running times (right) for different number of ARs.



A further interesting result is that the sensitivity concern-
ing the number of available ARs is low for almost all of the
evaluated algorithms. Exceptions are GOA-LM which might
encounter slight performance degradations due to the prob-
lem just mentioned and GOA-OZTURK that suffers from an
exploding number of variables and constraints in the ILP
formulation. The exact solvers presented in this paper en-
counter only slightly more difficulties with an increase in the
number of ARs as can be seen from the number of timed
out instances in Tab. 2. However, for most of the instances,
their runtime overhead over the fast heuristics was accept-
able even when considered for practical use.
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Figure 7: Timeouts per number of variables. The leftmost
points reflect the distribution of all instances.
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most points reflect the distribution of all instances.

7. CONCLUSION AND OUTLOOK
This paper has introduced a novel ILP approach to the

General Offset Assignment problem that, for the first time,
can solve 98% of the instances in OffsetStone to optimal-
ity, including non-trivial instances with a few hundred vari-
ables. Our experimental results unveil significant gaps be-
tween the solution quality of state-of-the-art General Off-
set Assignment heuristics and optimal solutions. For the

large benchmark set considered, they are much more criti-
cal than in the case of Simple Offset Assignment. Further,
the results underline the hypothesis that it is disadvanta-
geous to perform address register assignment before offset
assignment. The vast amount of instances that could be
solved by our exact solver within a short time frame give
hope that optimal or near-optimal solutions to the General
Offset Assignment problem are realizable in practice. This
is especially true since our primal heuristic often finds opti-
mal or near-optimal solutions and much of the solving time
is devoted to just prove that they are indeed optimal. In
practice, exact techniques could lead to a much better ex-
ploitation of address generation units in application specific
and digital signal processors. Based on the presented re-
sults, an exact approach could possibly be part of a real
compilation process. An idea would be to combine it with a
time limit and a fallback heuristic in order to protect against
convergence problems for harder instances. Still there is a
lot of improvement potential. The quadratic nature of the
problem (the objective function) suggests to consider fur-
ther solution techniques, i.e., to transform the problem into
a maxcut problem or to formulate it as a semidefinite pro-
gram. These approaches might result in better lower bounds
and therefore be able to prove the optimality of found so-
lutions more often than our solvers could. Since the sub-
problem of address register assignment is polynomial-time
solvable even more sophisticated approaches like Bender’s
decomposition are candidate solution techniques. Another
branch for further research is the question how to incorpo-
rate larger autoin-/decrement ranges and modify registers
into a formulation that can handle a large set of instances.
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APPENDIX

A. REVISED MODEL OF OZTURK ET. AL
This appendix summarizes our changes made to the ILP

model by Ozturk et al. [20] to capture GOA accurately. The
asymptotic order of variables and constraints is not altered.
The original model does not account for AR initialization
costs. We repair this by adding a special variable vM to the
set of input program variables V = {v0, . . . , vM−1} that is
fixed to the artificial memory location M (LvM ,M = 1). In-
stead of pointing ‘nowhere’ at program point s = 0 (Pr,v,0 =
0, for all r ∈ R and v ∈ V), all variables now point to vM
(Pr,vM ,0 = 1, for all r ∈ R) with the meaning that they are
uninitialized. Initialization costs will be paid as soon as a
register is moved away from vM , since we let vM be only
within its own autoin-/decrement range, i.e., RvM ,vM = 1
and Rv,vM = 0 (RvM ,v = 0) for all v 6= vM . For validity, vM
is also excluded from constraint (4) of the original model.

Constraint (4) forces transitions between adjacent vari-
ables v1 and v2 to have zero costs (Rv1,v2 = 1). However,
a constraint to let non-adjacent transitions have non-zero
costs (Rv1,v2 = 0) is missing. Hence, we add the constraints

Rv1,v2 ≤ 2− Lv1,a − Lv2,b

for all v1, v2 ∈ V \vM and positions a, b such that |a−b| > 1.
At each program point s ∈ S, the variable Sequence(s)

is accessed. Constraint (10) of the original model restricts
the AR used for this access to be the only AR pointing to
this variable at s. However, there is no reason why further
ARs should not be able to point to the same address and
it has not been proven whether such a restriction preserves
optimality in each case. Thus we relax the constraint to

∑
r∈R Pr,Sequence(s),s ≥ 1, ∀ s ∈ S.

To identify the AR responsible for a particular access we add
variables Ar,s ∈ {0, 1} for each register r ∈ R and program
point s ∈ S and the equations

∑
r∈R

Ar,s = 1, ∀ s ∈ S.

Also, if AR r is used for the access at program point s,
then r must hold the respective address. This is enforced by

Pr,Sequence(s),s ≥ Ar,s, ∀ r ∈ R, ∀ s ∈ S.

Unlike in the original model, an AR can only change the
variable it points to if it is used in an access:

Pr,v,s ≥ Pr,v,s−1 − Ar,s, ∀ r ∈ R, ∀v ∈ V, ∀ s ∈ S

To be precise, this constraint allows each AR to move be-
fore each performed access, not after, but it yields the same
solutions and the interpretation is unambiguous.


