Testing Continuous Double Auctions with a
Constraint-based Oracle

Roberto Castafeda Lozano!:2, Christian Schulte!, and Lars Wahlberg?

! KTH - Royal Institute of Technology, Sweden
{rcas,cschulte}@kth.se
2 Cinnober Financial Technology AB, Stockholm, Sweden
{roberto.castaneda,lars.wahlberg}@cinnober.com

Abstract. Computer trading systems are essential for today’s financial
markets where the trading systems’ correctness is of paramount eco-
nomical significance. Automated random testing is a useful technique to
find bugs in these systems, but it requires an independent system to de-
cide the correctness of the system under test (known as oracle problem).
This paper introduces a constraint-based oracle for random testing of a
real-world trading system. The oracle provides the expected results by
generating and solving constraint models of the trading system’s contin-
uous double auction. Constraint programming is essential for the correct-
ness of the test oracle as the logic for calculating trades can be mapped
directly to constraint models. The paper shows that the generated con-
straint models can be solved efficiently. Most importantly, the approach
is shown to be successful by finding errors in a deployed financial trading
system and in its specification.

1 Introduction

A financial market is a system that allows buyers and sellers to trade and ex-
change items of value. Nowadays, all major financial markets use computer sys-
tems to support their trading activities [1]. TRADEzpress, developed by Cin-
nober Financial Technology AB, is an example of such a system. TRADFEzxpress
is deployed in different markets around the world, such as the London Metal
Exchange, Alpha Trading Systems, or the Hong Kong Mercantile Exchange.

The predominant trading mechanism in financial markets are continuous dou-
ble auctions [2]. In a continuous double auction, trade orders are entered contin-
uously and matched against each other as soon as their constraints are satisfied.
The numerous trading strategies render the order matching of TRADEzxpress
complex. At the same time, system failures can cause serious economic dam-
age: according to Cinnober’s risk assessment, a failure halting TRADExpress is
estimated to incur losses in the order of several million US dollars.

Automated random testing, as a complement to more systematic testing tech-
niques, is useful in finding bugs in trading systems [3]. However, it presents an
inherent problem, commonly known as the test oracle problem: an independent
system called test oracle is needed to automatically decide the correctness of the

2 Roberto Castaneda Lozano, Christian Schulte, and Lars Wahlberg

output generated by the system under test. The usual goals for designing test
oracles are correctness, completeness, accuracy, and low development cost [4].

TRADExpress
bid | ask

trade order actual trades

/ \ test result
=
\ test oracle /

trade order bid [ask expected trades

Fig. 1. Random test with the constraint-based test oracle

This paper uses constraint programming to solve the test oracle problem that
arises for random testing of continuous double auctions. We present a constraint
model of the TRADEFEzxpress’ continuous double auction derived from a set of
informal system requirements, and use the model as a test oracle for automated
random tests as shown in Fig. 1. The relevance of our approach is illustrated by
the number of defects found in the requirements during the modeling process
and failures detected during the execution of the random tests.

Related work. Constraint programming has typically been used for automatic
test data generation from formal specifications of the system under test [5, 6].
Nevertheless, the case where formal specifications are not available has not been
thoroughly explored by the constraint programming community, apart from some
efforts in the field of hardware testing [7]. In the area of financial services, the
test oracle problem has typically been approached by developing simple failure
detection mechanisms [3]. The lack of more complete test oracles has prevented
the large-scale application of random testing to trading systems. To the best of
our knowledge, there are no previous attempts to design a test oracle that covers
the complete functionality of a real-world trading system.

The study of continuous double auctions for other purposes than testing and
verification has attracted interest from different areas. Several articles present
theoretical models formulated using constraint programming [8] or closely related
techniques such as integer programming [9]. However, aspects like order priority,
which are common issues in most existent trading systems [10, Ch. 2, Appx.],
have not been previously considered in these research models.

Testing Continuous Double Auctions with a Constraint-based Oracle 3

Main contributions. The main contributions of this paper are as follows:

— a constraint-based model, for the first time, of a non-theoretical continuous
double auction;

— results that show the success of a constraint programming approach to the
test oracle problem in financial systems, including the detection of several
documentation defects and two failures caused by relevant bugs in the system
under test;

— empirical evidence of the feasibility and cost-effectiveness of using formal
models in the verification of these systems.

Plan of the paper. Section 2 explains how the continuous double auction works
in TRADFEzpress. Section 3 defines the constraint programming model used as
a test oracle. Section 4 gives measures related to the main characteristics of the
test oracle and results obtained from the execution of random tests. Section 5
concludes and discusses future perspectives.

2 TRADEzxpress and the Continuous Double Auction

This section introduces the main elements related to the continuous double auc-
tion, and shows the details of the TRADExpress implementation which are nec-
essary to understand the developed model.

The order book. The component of a trading system where different trade
orders referring to a certain item are stored and matched is called order book.
The order book is usually represented as a table with two columns called sides.
These columns respectively contain the buy (bid) orders, and the sell (ask) orders
sorted in descending priority order (see Fig. 2).

Bid orders Ask orders

bo : bid order with highest priority|ao : ask order with highest priority

b, : bid order with lowest priority |a.m, : ask order with lowest priority

Fig. 2. An order book

Trade orders. A trade order is a request to buy or sell a certain quantity of a
financial item. A TRADFEzpress order has the following main attributes:

— Side: bid or ask. The opposite side of “ask” refers to “bid” and vice versa.

4 Roberto Castaneda Lozano, Christian Schulte, and Lars Wahlberg

— Quantity ¢: amount of units to trade.

— Minimum quantity mg: minimum part of the order quantity that must be
matched for the order to be allowed to trade.

— Limit price Ip: worst price (highest if the order is a bid, lowest if the order
is an ask) that the order can accept in a trade. It can be either fixed by the
trader or derived by the system from the state of the order book: market
price: the order gets a limit price so that it can match any other order in
the order book; pegged price: the order gets the same limit price as the best
order with a fixed limit price on its side.

— Duration: validity period of the order. Ranges from no limit to a single match
opportunity, where the order gets an opportunity to trade and is immediately
canceled if it does not succeed.

An order is written as ¢ (> mgq) Q Ip, where Ip is determined in one of the

three ways mentioned above. These attributes can be combined to form the most
common order types (listed in Table 1).

Table 1. Common order types and their attribute values

Order type mq lp Duration
Market 0 market price one match
Limit 0 fixed trading day
Fill-or-kill q fixed one match
Fill-and-kill 0 fixed one match
All-or-none q fixed trading day
Pegged 0 pegged price trading day

To encourage orders that increase the liquidity of the order book, the follow-
ing prioritization criteria, sorted by precedence, are applied to each side:

1. Limit price: orders with better limit prices (higher for bid orders, lower for
ask orders) get higher priority.

2. Minimum quantity: orders without minimum quantity get higher priority.

3. Time of entry: orders entered earlier get higher priority.

Matching mechanism. Continuous double auction is the applied trading
mechanism during most of the execution time of TRADFEzpress. In a contin-
uous double auction, traders are allowed to enter, update, and cancel orders in
the order book at any time. Whenever the trading rules allow it, bid and ask
orders are matched into trades.

The attributes of an order and its position in the order book determine
if the order can be matched against orders on the opposite side. In a valid
matching, minimum quantity constraints must always be satisfied, and the limit
prices between matched orders must be compatible. Order priority is enforced

Testing Continuous Double Auctions with a Constraint-based Oracle 5

by allowing an order to match only if all the orders with higher priority and no
minimum quantity are matched as well.

Matching in TRADFEzpress is done in two steps. Every time a trade order is
entered or updated, a match attempt is performed, where the incoming order is
greedily compared with the orders on the opposite side. For performance reasons,
the capacity of the match to find trades is limited. Therefore, if the system
detects that there are still potential trades, a second match attempt called re-
match is performed. In the re-match, all possible combinations between orders
from both sides are explored (see Fig. 3).

potential matches

no potential match]

Fig. 3. Two-step matching in the TRADFEzpress’ continuous double auction

In some scenarios, an order with high priority might block potential trades
where orders with lower priority are involved. This might happen, for example,
if the high-priority order cannot add its quantity to any other order on its side
for trading against an all-or-none order. In these cases, a cancellation of the
high-priority order gives way for the blocked orders to match. Because of this,
TRADExpress executes a re-match after an order cancellation.

3 The Test Oracle

To be able to provide the expected trades after every order action, the test oracle
holds a model of the state of the TRADEzxpress order book. In this model, orders
of all types shown in Table 1 are represented by their quantity ¢, minimum
quantity mgq, limit price [p, and position in the order book.

Every time an order is entered, updated, or canceled, the order book model is
updated accordingly, and the limit price Ip of each order is calculated following
the rules given in Section 2. Then, a corresponding order matcher problem is
generated and solved with the aid of a constraint programming system. The
order book model is updated with the results, and the process is repeated for
the re-matcher problem. Finally, the combination of calculated trades for both
problems is compared with the output generated by TRA DFEzpress. Fig. 4 shows
the structure of the test oracle.

3.1 The Order Matching Framework

The order matching framework defines the integer variables that represent the
quantity matched between different orders, some auxiliary variables that are
useful in the modeling of more advanced rules and constraints that set the basic
limitations in how quantities can be distributed.

6 Roberto Castaneda Lozano, Christian Schulte, and Lars Wahlberg

test oracle

holds

[order book model]

-
uses N _ uses
- N

[order matcher model] [order re-matcher model]

N

[order matching framework]

Fig. 4. Structure of the test oracle

Input data. An order book with n bid orders and m ask orders sorted by
decreasing priority (n,m > 1):

Bid orders Ask orders
bo: qv, (= may,) Q lpy, a0 qay (> MGay) @ Ipg,

bp—1: qb,, (2 mqbnfl) Q@ lpbnfl am—-1"* Gay,_1 (Z mqa'rnfl) Q lpam.fl

where ¢, mqp and Ipy represent the quantity, minimum quantity and limit price
of the bid order b. For the sake of simplicity, we define the set of bid orders
B ={b; | 0 <i<n}and the set of ask orders A = {a; | 0 < j <m}.

Variables. The following non-negative integer variables represent how the quan-
tities of the given orders are distributed in a match:

ao ... Qm_1 |total

bo ﬁquao ﬁqb(};am,fl tqp,

brn—1 tqbn,fl,ao tqbnflaam,fl tqb,, 4

total| tgs, ... 14a, tq

where tgp , represents the quantity traded between the bid order b and the
ask order a. The auxiliary variables tqp, tq,, and tq represent the total traded
quantity of the bid order b, the ask order a, and between all orders:

tqy = Z tqpe Vb€ B and tg, = Z tgpe Va € A
acA beB

Testing Continuous Double Auctions with a Constraint-based Oracle 7

tq:Zth:ZtQa

beB acA

Constraints. The framework constraints impose the basic rules on how quan-
tities can be distributed in a generic match problem, considering limit prices,
maximum and minimum quantities, and order priorities.

Limit price. Two orders can only match if the limit price of the bid order is
greater or equal than the limit price of the ask order:

Ipp <lps, = t@po =0 Vbe B,ac A (1)
Mazimum quantity. Orders cannot trade over their maximum quantities:
tqg, < q, Yre BUA

Minimum quantity. Orders can only trade above their minimum quantities or
not at all:
tqy > mq, Vig, =0 YVre BUA (2)

Order priority. An order without minimum quantity constraint cannot be by-
passed by another order with lower priority:

tqy, < qo, N mqp, =0 = tqp, =0 Vb, b; € B:i < (3)

tqa; < Ga; N MG, =0 = tqq; =0 Vaj,a; €A:i<j (4)

3.2 The Order Matcher Model

The order matcher model corresponds to the first step in the TRADEFEzxpress’
continuous double auction. In this problem, the incoming order is sequentially
matched against the opposite side, starting by the order with highest priority.

Input data. The input data to the order matcher model is the order book
inherited from the matching framework and the incoming order ¢ together with
its side C: c€ C, C € {B, A}.

Variables. The order matcher uses only the traded quantity variables inherited
from the matching framework (as described in the previous subsection).

Objective function. The solution must maximize the total traded quantity:

maximize(tq) (5)

8 Roberto Castaneda Lozano, Christian Schulte, and Lars Wahlberg

Constraints. The order matcher constraints impose that only the incoming
order can trade on its side and the matching is performed sequentially.

Incoming order. The incoming order c is the only one that can trade on its side:
tgz =0 Ve C —{c} (6)

Sequential matching. An order on the non-incoming side whose quantity, added
to the accumulated traded quantity of orders with higher priority, still fits into
the quantity of the incoming order ¢ cannot be bypassed by orders with lower
priority:

ce A Natq(by) +qu, < qe ANtgy, < qp, = tqy; =0 Vb, b € B:i<j (7)
ce B Natq(ai) + qa; < qe NlGa; < Go; = tqa; =0 Vaja; € A:i<j (8)
where atq(z;) is a function from orders to integers that represents the accu-
mulated traded quantity from xy to x;—1:
ata(ao) = 0

atq(xi) _ {atQ(zil) + Qz;_y if atQ(zzFl) + a1 S Qe

. for i
atq(z;—1) otherwise ori>0

Example. Let us consider the following order book, where the incoming order
ap has received the highest priority on the ask side due to its limit price:

Bid orders Ask orders
bo: 10 @ 10 —ap:18@38
b1:10 (>10) @9 |a;: 30 (>30) @9
by:5(>5)@9

b323@7

The only order allowed to trade on the ask side is ag (6). To maximize the
total traded quantity (5), by must trade all its quantity. Otherwise, the lower
priority orders by, ba and b3 would not be allowed to match at all (3). Given that
bo trades all its quantity, b; cannot trade due to its minimum quantity constraint
(2). Finally, by contributes to the objective by trading all its quantity. The limit
price of b3 is not compatible with that of ag (1). Hence, the expected trades are:

bo(—)&o:lo b2<—>a0:5
As this example illustrates, the order matcher always finds a single valid

solution. This is enforced by the order priority (3, 4) and sequential matching
(7, 8) constraints.

Testing Continuous Double Auctions with a Constraint-based Oracle 9

3.3 The Order Re-matcher Model

The order re-matcher model corresponds to the second step in TRADEFEzxpress’
continuous double auction (see Fig. 3). This problem is used as a complement
to the order matcher when this, due to its restrictive constraints, is not able to
calculate all potential trades in the order book. Although both problems share
the same basic structure, their variables and constraints differ. Because of this, it
is not possible for the order re-matcher to reuse the solution to the order match
problem.

In an order re-match, all possible combinations between order quantities are
considered. All orders participating in trades must have a limit price compatible
with a reference price, called the equilibrium price, which is selected to maximize
the objective function. Orders without minimum quantity constraints and better
limit price than the equilibrium price are called must trade orders, because all
their quantity must be matched in a valid solution.

Input data. The input data is the order book inherited from the general match-
ing framework.

Variables. Apart from the traded quantity variables inherited from the match-
ing framework, the following variables are added for re-matching:

— A non-negative integer variable eqp, which represents the equilibrium price
of the order matching and whose domain is the set of different order limit
prices {lp, | x € BU A}.

— An integer variable im representing the imbalance in a calculated matching:

im = > (w—te) — Y, (a—1tqa) (9)
beB: acA:
lpy=eqp,mqy=0 lpa=eqp,mqa=0
— Non-negative integer variables tqo,...,t¢n+m—1, Where tqy represents the
total traded quantity between orders whose indexes sum up to k:

tqy, = Z tqp;a; VE:0<k<n+m
bieB,aj€A:
i+j=k
The main purpose of these variables is to reflect the total traded quantity
in different priority levels. Graphically, each priority level ¢g; corresponds to
a counter-diagonal in the traded quantity matrix. For example, a re-match
problem with n = m = 3 has five priority levels. tqy corresponds to the
darkest diagonal in the following representation:

ao a as
bo - tqbo,a1 tqbo,az
by [tqby,a0 01,00 16,0,
b2 tqvr,a0 1qbs,a1 1Gbs,as

10 Roberto Castaneda Lozano, Christian Schulte, and Lars Wahlberg

Objective function. In contrast to the order matcher problem, for an order
re-match problem it is possible to obtain several solutions that maximize the
total traded quantity tq. If this happens, it is desirable to get a solution where
the unmatched quantity of orders in the equilibrium price level is balanced on
both sides of the order book. This can be obtained by minimizing the abso-
lute imbalance |im|. If several solutions present the same total traded quantity
and absolute imbalance, trades between orders positioned higher in the order
book are prioritized by lexicographically maximizing the different priority levels
tQQ, N ath—i-m—l-

In summary, the solution must lexicographically maximize the following tuple
of integer variables (note that the absolute imbalance |im| is to be minimized):

maximize({tq, —|im|, tqo,. .., tqntm—-1)) (10)

Constraints. The order re-matcher constraints define the effect of the equilib-
rium price on which orders can trade and impose that the whole quantity from
must trade orders is always traded.

Equilibrium price. An order that has worse limit price than the equilibrium price
eqp cannot trade:

lpp < eqp = tq, =0 Ybe B

lpe > eqp = tqg, =0 Yae A (11)

Must trade quantity. The quantity from all must trade orders on both sides must
be completely matched:

> (@—te)=0 and > (ga—tga) =0 (12)
beB: acA:
lpp>eqp,mq,=0 lpa <egp,mqq,=0

Example. Let us consider the following order book:

Bid orders Ask orders

Do 10 (> 10) @ 19 |ap : 6 (= 6) @ 12
a1:9(>9) @12
as: 5 Q16

as: 5 (>5) @17

There are several possible pairs of ask orders that can trade the total quantity
of by, maximizing the total traded quantity (10):

Pair eqp |im|
{ao, 0,2} 16 1
{al, (IQ} 16 4
{ag, ag} 17 0

Testing Continuous Double Auctions with a Constraint-based Oracle 11

If one of the two first pairs is chosen, the equilibrium price is set to 16, so that
ag can trade (11). In that case lp,, = egp, and az adds its unmatched quantity
to the imbalance (9). If the pair {as, as} is chosen, the equilibrium price becomes
17, and as becomes a must trade order, no longer contributing to the imbalance.
Because the must trade constraint (12) is satisfied, and the absolute imbalance
|im| is minimized (10), the pair {as,as} is chosen to trade with by:

b0<—>a2:5 b0<—>a3:5

3.4 Why Constraint Programming?

As mentioned in the introduction, accuracy and low development cost are two
essential goals in the design of test oracles. These goals require that the imple-
mentation of the test oracle is kept simple and easily traceable to the specifica-
tion. The main reason for using constraint programming has been therefore the
ease of implementing every concept from the matcher and re-matcher models,
including logical expressions (3) and lexicographic optimization (10).

In particular, the chosen system (Gecode) has allowed us to express the lex-
icographical optimization straightforwardly, by adding new lexicographic con-
straints every time a better solution is found. Another relevant factor in the
decision to use constraint programming has been the availability of solvers dis-
tributed as object-oriented libraries. This feature has contributed to a simpler
and thus less error-prone interface with Cinnober’s JUnit-based test framework.

4 Results

We evaluate the constraint programming approach to the test oracle problem
from two angles. First, we show the failures detected by the oracle in the execu-
tion of random tests against TRA DFEzpress. Then, we complete the analysis by
giving results related to the design goals of the test oracle.

The constraint models used by the test oracle have been implemented in
the constraint programming system Gecode [11], version 3.2.0. The branching
strategy for all variables in both models has been to branch on the variable
with the smallest domain. The values are selected by splitting the domain into
two subsets, exploring the larger subset first. The search has been executed on a
single core. All tests and measurements have been performed on a Linux machine
with a Quad-Core Intel Xeon 2.5 GHz processor and 4 GB of main memory.

Random tests. We have considered a scenario designed to exploit all capabili-
ties of the test oracle. It includes three traders entering, updating, and canceling
random orders of different types. Table 2 shows the designed configuration, with
the probabilities of traders and actions being chosen in each cycle.

We have run 500 test cases with different random generator seeds. Each test
case comprises 100 order actions each, with prices generated in a range between
10 and 100, and quantities generated in a range between 2 and 50.

12 Roberto Castaneda Lozano, Christian Schulte, and Lars Wahlberg

Table 2. Random traders, actions and probabilities in the executed test cases

Trader Probability Action Probability

Enter a limit order 80%

A 30% Update an order 10%
Cancel an order 10%
Enter a marker order 33.3%

B 30% Enter a fill-or-kill order 33.3%
Enter a fill-and-kill order 33.3%
Enter an all-or-none order 40%
Enter a pegged order 40%

C 40% Update an order 10%
Cancel an order 10%

Table 3. Total match and re-match hits and expected trades in the test runs

Matching step Total hits Total trades
Match 10895 17037
Re-match 526 1189

Although we planned a total of 50 000 order actions, premature terminations
in several test cases due to the detection of failures have reduced the total order
actions to 45 144. Table 3 shows the total match and re-match calculations with
positive traded quantity (called hits) and their corresponding expected trades.

Table 4. MTBF of the failures detected in the random test cases

Failure Occurrences MTBF (order actions)
Pegged order in empty order book 51 885
Incoming low priority order matches 37 1220
Total 88 513

After applying manual analysis to the failing test cases, we were able to iden-
tify two types of failures in TRADFEzxpress reported by the test oracle. In order
to better understand the corresponding risks, we have calculated the individual
and total Mean Time Between Failures (MTBF) during the execution of the
random tests. The results, expressed in number of order actions, are shown in
Table 4. Further detail about each type of failure can be found in [12, Ch. 6]:

A pegged order remains in an empty order book. An invariant of the order book in
TRADExpress is that a side that does not contain any limit order cannot contain
a pegged order, because pegged orders require limit orders to base their price
on. This invariant is verified by the test oracle at the end of the two-matching
step calculations, and was violated in several test scenarios.

Testing Continuous Double Auctions with a Constraint-based Oracle 13

An incoming order without best priority is allowed to match. In some specific
situations, constraints 3 and 4 in Section 3.2 were violated by TRADFEzxpress,
allowing orders without the best priority to match when higher-priority orders
did not.

These two failures correspond to bugs in the core of the TRA D Express match-
ing logic. Both bugs have been reported and fixed by the time of writing this
paper. These bugs had been most likely present in the system for several years.
However, the infrequent test cases needed to reproduce them had not been gener-
ated in more systematic testing approaches. Previous random testing approaches
were not able to detect them either, because of the lack of a complete test or-
acle [3, Ch. 6]. The detection of these failures can be seen, thus, as empirical
evidence of the effectiveness of the constraint programming approach to the test
oracle problem.

Furthermore, in the requirements formalization process for formulating the
constraint model, we have detected six documentation defects, classified into two
categories: ambiguous statements due to the use of a natural language (English);
erroneous calculations in illustrative examples.

Main goals of the test oracle. As mentioned in the introduction, the main
goals for the design of the oracle have been completeness, correctness, accuracy,
and low development cost. Performance has been a secondary goal, because the
execution of the random tests does not require manual intervention and is not
subject to time pressure.

Completeness. Table 1 shows the main order types supported by TRADExpress.
A more complete list is given in [13]. The order types Good till Date, Good for
Day, Good till Canceled, and Good until Next Uncross are special cases of the
limit order, differing only in their duration, and are thus covered by the test
oracle.

The test oracle covers 10 out of the 13 order types listed in [13], that is, a
77% of the order types supported by TRADFEzpress. Extending the model to
support the remaining Stop-loss, Iceberg and Dark order types is left as future
work.

Accuracy and correctness. The use of a declarative programming paradigm such
as constraint programming reduces the proof of correctness of the continuous
double auction model to verifying the specification itself. Furthermore, it makes
the oracle more independent from the system under test, which is developed
following an imperative paradigm. This independence contributes to the effec-
tiveness of the test oracle, as it reduces the likelihood of sharing design and
implementation bugs with the system under test [4].

Development cost. The development of the test oracle, including modeling, im-
plementation and testing, took approximately 200 person-hours. All used tech-
nologies, including the constraint programming system, are freely available. We

14 Roberto Castaneda Lozano, Christian Schulte, and Lars Wahlberg

have estimated the maintainability by counting lines of code [14]. The test oracle
has 1946 lines of code, approximately only 20% of the code that implements the
modeled functionality in TRADFEzpress. Furthermore, the declarative nature of
the model makes it easy to trace changes in the system requirements, which
contributes to lower maintenance costs.

Performance. We have measured the average execution time taken by Gecode
to solve the different order match and re-match problems generated during the
execution of 60 test cases based on the scenario shown in Table 2. Due to the
limited accuracy of the time measurement functions in the considered orders of
magnitude, the average time of 50 executions has been taken for each match and
re-match problem.

In a total of 4256 instances, the order match problem is solved in 161 us on
average, with a coefficient of deviation of 85%. The order re-match problem as a
more complex combinatorial problem takes 388 us on average, with a coefficient
of deviation of 61%, for a total of 3534 instances. Some degenerate re-match
problems designed to stress-test the oracle take up to 155 ms to be solved,
which is still an order of magnitude more efficient than our initial design goal.

5 Conclusion and Future Work

This paper has introduced a constraint-based test oracle for a continuous double
auction from a real-life trading system. It has shown that constraint program-
ming meets the particular goals for the design of test oracles, providing accuracy
and ease of modeling in a cost-effective way. The significance of this approach
is witnessed by finding actual, relevant bugs in a widely-deployed, thoroughly
tested trading system. As a side benefit, several defects in the system require-
ments have been found.

The results obtained in this paper support the importance of using formal
models in the development of complex financial systems such as TRADFEzxpress.
Constraint programming adds the ability to make these models executable with
low development cost. This application improves significantly the effectiveness
of the testing process, and has raised interest at Cinnober: the company plans
to continue the formalization process initiated by this research and to use the
test oracle for regression purposes.

An obvious way to improve the effectiveness of the test oracle is to extend the
continuous double auction model to cover additional order types supported by
TRADUEzxpress, as suggested in Sect. 4. Considering a more global perspective,
the emergence of open protocols such as the Financial Information eXchange
protocol (FIX) [15] opens an opportunity to extend the application presented in
this paper to a variety of trading systems. Future work in this direction would
include the development of a constraint-based test oracle implementing a relevant
subset of a widely adopted protocol such as FIX.

Acknowledgments. The authors are grateful for helpful comments from Mikael
Z. Lagerkvist, Carles Tomas Marti and the anonymous reviewers.

Testing Continuous Double Auctions with a Constraint-based Oracle 15

References

1]

2]

8]

[4]
[5]

[6]

(7]

8]

[9]

[10]
[11]

[12]

[13]
[14]

[15]

Wagner, W.H.: Electronic trading: rival or replacement for traditional floor-based
exchanges? In: World of Exchanges: Adapting to a New Environment. Euromoney
Books (2007)

Friedman, D., Rust, J., eds.: The double auction market: institutions, theories,
and evidence. Addison-Wesley (1993)

Hojeberg, N.: Random tests in a trading system: random tests in a trading system
using simulations and a test oracle. Master’s thesis, School of Computer Science
and Communication, KTH Royal Institute of Technology, Sweden (2008)
Hoffman, D.: Using oracles in test automation. Proceedings of Pacific Northwest
Software Quality Conference (2001) 90-117

Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using con-
straint solving techniques. SIGSOFT Softw. Eng. Notes 23(2) (1998) 53-62
Meudec, C.: ATGen: automatic test data generation using constraint logic pro-
gramming and symbolic execution. Software Testing Verification and Reliability
11(2) (2001) 81-96

Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formula-
tion and solution techniques for random test program generation. IBM Systems
Journal 41(3) (2002) 386-402

Ryu, Y.U.: Hierarchical constraint satisfaction of multilateral trade matching in
commodity auction markets. Annals of Operations Research 71(0) (1997) 317-334
Kalagnanam, J.R., Davenport, A.J., Lee, H.S.: Computational aspects of clear-
ing continuous call double auctions with assignment constraints and indivisible
demand. Electronic Commerce Research 1(3) (2001) 221-238

Hasbrouck, J.: Empirical Market Microstructure: The Institutions, Economics,
and Econometrics of Securities Trading. Oxford University Press (2007)

Gecode Team: Gecode: Generic constraint development environment.
www.gecode.org (2006)

Castafieda Lozano, R.: Constraint programming for random testing of a trading
system. Master’s thesis, School of Information and Communication Technology,
KTH Royal Institute of Technology, Sweden (2010)

Cinnober Financial Technology AB: TRADExpress Trading System product
sheet. http://www.cinnober.com/files/TS_ProductSheet_0.pdf (2010)

Zuse, H.: A Framework of Software Measurement. Walter de Gruyter & Co.,
Hawthorne, NJ, USA (1997)

FIX Protocol Limited: Financial Information eXchange Protocol.
www. fixprotocol.org (2010)

