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Abstract
Fifty years of parallel programming has generated a sub-
stantial legacy parallel codebase, creating a new portability
challenge: re-parallelizing already parallel code. Our solution
exploits inherently portable parallel patterns, and addresses
the challenge of identifying patternization opportunities in
legacy parallel code via constraint matching on traced dy-
namic dataflow graphs. Notably, this makes the analysis
source-independent and equally applicable to sequential and
parallel legacy code. We identify various map and reduction
patterns, including compositions, in Pthreads code. Exper-
iments with the Starbench suite show that our analysis is
effective (finding 86% of the patterns known in the litera-
ture), accurate (reporting actual patterns in 98% of the cases),
and efficient (scaling linearly with the size of the execution
traces). We re-express the found patterns via a parallel pat-
tern library, making code freely portable across CPU/GPU
systems and performing competitively with hand-tuned im-
plementations at zero additional effort.

CCS Concepts: • Theory of computation→ Parallel al-
gorithms; Constraint and logic programming.

Keywords: parallel patterns, code modernization, dynamic
analysis, pattern matching

1 Introduction
For fifty years, “parallelization of legacy software” has meant
the challenge of transforming sequential code into equiva-
lent but faster parallel form. With explicit parallel coding
now mainstream, a new challenge arises: as complex het-
erogeneous architectures continue to evolve, how can we
re-parallelize legacy parallel code so that it remains fit for
purpose? This is not simply about semantic portability. Lan-
guages for the full spectrum of heterogeneous systems offer
diverse conceptual models and may even require algorithmic
rethinking for best performance.
If we are coding from scratch, a programming methodol-

ogy based around parallel patterns can help considerably [12,
48, 49]. Patterned parallel code is inherently portable, and op-
timization, including algorithmic revision, is handled trans-
parently by the ingenuity of the pattern architect [8, 36]. But
what if legacy parallel code already exists? We address the
missing link: our analysis examines legacy parallel code, and
reports on the presence of code fragments which could be re-
placed by calls to known parallel pattern library abstractions.
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Figure 1. Overview of our parallel pattern finding analysis.

These instances are fed back to the programmer, indicating
precisely where in the legacy code it will be possible to make
this transformation, and therefore to gain the portability
advantages of the known pattern implementations. It is no
surprise that this is possible: legacy programmers will often
have naturally gravitated towards the algorithmic strategies
which underpin standard patterns, but coded them ad hoc.
Our challenge is to find these code fragments and highlight
them to the programmer.
We have a simple thesis: each pattern is fundamentally

characterized by the topology of the dynamic dataflow it
invokes, and the repetitions within it, rather than the static
structure of the codewhich expresses it. This makes our work
oblivious to whether the legacy code is sequential or parallel.
Our representation also abstracts away from the bulk data
structures used: we can analyze linked-list code as simply
as array code. Our core technique is to define patterns as
constrained subgraphs of dynamic dataflow graphs (DDGs),
and to deploy a standard constraint programming system to
find instances of these in the traces of instrumented legacy
parallel programs. Unlike previous work on sequential code,
it is crucial for us to to be able to reason about different
executions of the same instruction, as these characterize the
parallel forms of some patterns, as discussed in Section 2.
Our analysis is captured in Figure 1. Our compiler pass

instruments the legacy program. The resulting traced DDG
is matched against predefined patterns, employing heuris-
tics which trade analysis time against completeness. A key
feature is the cycle on pattern-finding: identifying and ab-
stracting simple patterns can reveal more complex pattern
nests and compositions. Since our initial implementation
instruments Pthreaded C/C++ code, we evaluate our analysis
on the Starbench benchmark suite [2]. Our patterns include
maps, reductions, and compositions of these. We find 36
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of the 42 expected instances in Starbench, including some
which require iterated application of the matching phase.
The only six missed instances raise interesting issues to be
addressed in future work. In summary, our contributions are:
• we implement a compiler passwhich instruments legacy
parallel C code to generate DDGs;
• we characterize a range of map, reduction, and map-
reduction patterns in terms of their dynamic dataflow;
• we describe a scalable, iterative pattern-finding analy-
sis to identify instances of ad hoc coding of patterns
in the DDGs of legacy parallel code; and
• we report excellent effectiveness and accuracy of our
analysis on the Starbench benchmark suite, and strong
performance and portability of the resulting programs.

Our strategy raises several meta-issues. Firstly, a dynamic
analysis is only as good as the input used. In deployment,
our system would require programmer confirmation of its
suggestions. Experiments show that our approach is highly
accurate: it reports actual patterns in 98% of cases, reflect-
ing previous findings that “data-dependences in frequently
executed loops are not changed noticeably with respect to
different input” [45]. Secondly, our approach may generate
a large number of pattern suggestions. In deployment, we
could use related work such as hot-spot profiling [25] to
focus on the most promising cases.
The remainder of the paper is structured as follows: Sec-

tion 2 presents a motivational example, Section 3 introduces
our DDGs and the instrumentation pass to generate them,
Section 4 explains our use of constraint programming to
capture patterns, Section 5 discusses our iterative pattern
finder and the heuristics which make it scalable, and Sec-
tion 6 presents our analysis of Starbench. We discuss related
work in Section 7, and the current limitations in Section 8.
We conclude with a discussion of future work.

2 Motivating Example
Figure 2a shows an excerpt from streamcluster, slightly
simplified for clarity (our analysis also handles the original
version, as shown in Section 6.1). streamcluster is a parallel
C program that groups a stream of points into clusters using
𝑘-medians clustering. streamcluster uses low-level multi-
threading (Pthreads) in different phases of the execution.
This program is a popular benchmark, available for example
in the PARSEC [6] and Starbench [2] suites.

The particular code excerpt in Figure 2a computes, in par-
allel, the total distance between the first point (P->p[0]) and
all other points. First, each thread pid computes the partial
distance (hizs[pid]) between a subset k1. . . k2 of the points
and the first point. Then, the total distance hiz is computed
by adding all partial distances. As highlighted in Figure 2a,
the entire computation can be seen as a parallel instance of
the compound map-reduction pattern, where the map cap-
tures the parallel computation of the distance between the

for (i = 0; i < nproc; i++) {
// Run pkmedian in nproc threads.
pthread_create(..);

}
..
for (i = 0; i < nproc; i++) {
pthread_join(..);

}
..
float pkmedian(Points *P, .., int pid) {
..
pthread_barrier_wait(..);
float myhiz = 0;
for (kk = k1; kk < k2; kk++) {
myhiz += dist(P->p[kk], P->p[0]);

}
hizs[pid] = myhiz;
pthread_barrier_wait(..);
for (i = 0; i < nproc; i++) {
hiz += hizs[i];
}
..

}

(a) Original distance computation.

float pkmedian(Points *P, ..) {
..
auto computeDist = MapReduce(
[] (Point p) {
return dist(p, P->p[0]);

},
[] (float h1, float h2) {
return h1 + h2;

}
);
hiz = computeDist(
Vector<Point>(P->p, P->num));
..

}

(b)Modernized version.

dist() dist() dist() dist()

+ + + +

+
+

(c) Partial, simplified DDG of the original parallel distance computa-
tion for four points and two threads (two points per thread).

Figure 2. Parallel distance computation in streamclus-
ter.c. Found patterns are colored in light gray (map), gray
(reduction), and dark gray (map-reduction).

first and all other points, and the reduction captures the intra-
and inter-thread addition of distances.

The use of Pthreadsmakes the parallelization CPU-efficient
but degrades its maintainability and precludes its portabil-
ity to increasingly powerful parallel architectures such as
GPUs. These properties could be improved by expressing the
computation with a map-reduction pattern instead, however
finding which patterns apply to a program is in general a te-
dious task carried out by experts. While there exist analyses
to find parallel patterns in legacy sequential code, to the best
of our knowledge no analysis exists to do so in parallel code
as in this case. Doing so involves significant challenges:

1. The entiremap-reduction is executed bymultiple threads
(challenging for static analysis).

2. The reduction is spread across multiple loops (chal-
lenging for analyses that examine one loop at a time).

3. The reduction is characterized by how the individual
executions of the addition operations are arranged
(challenging for existing dynamic analyses, which do
not reason about individual operation executions).
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4. The map is scattered across multiple translation units
(challenging for analyses that examine one function
or module at a time).

5. The reduction is obscured by data copying between
myhiz and hizs[pid] (challenging for analyses based
on idiom recognition).

Our analysis overcomes these challenges and finds the
compoundmap-reduction pattern in Figure 2a. Using a seam-
less multi-thread tracing technique allows it to derive the
same trace representation (a DDG) for sequential and paral-
lel code (challenge 1). Decoupling the representation from
its original code and applying powerful pattern matching
allows it to find patterns across single program regions (chal-
lenge 2). Capturing each individual operation execution in
the representation allows it to find patterns characterized
by specific groups of operation executions, as is common in
legacy parallel code (challenge 3). Analyzing whole-program
traces allows it to find patterns across translation units and
even libraries (challenge 4). Finally, abstracting away auxil-
iary computation such as data transfers and data-structure
traversals allows it to find patterns regardless of the specific
shape of the source code (challenge 5).

Figure 2c shows the DDG corresponding to the execution
of the Pthreaded code for four points and two threads. Nodes
correspond to executions of operations in Figure 2a, and arcs
correspond to flow of data among the executed operations.
For simplicity, each computation dist() is shown as a single
subgraph node, and the initial values of myhiz and hiz (the
addition identity 0) are depicted with sourceless arcs. The
map, reduction, and map-reduction patterns found by our
analysis are highlighted. Our pattern definitions capture
these patterns for varying number of points and threads.

After finding the map-reduction, the code can be modern-
ized by replacing the low-level Pthreads code (thread man-
agement, synchronization, andworkload splitting) with high-
level pattern library constructs. Figure 2b shows a modern-
ized C++ version adapted from the P3ARSEC suite [11]. The
modernized version implements the found map-reduction
pattern using the MapReduce pattern construct provided by
the SkePU 2 pattern library [16]. The modernized version in-
volves a single call to pkmedian, and handles thread creation,
destruction, and synchronization as well as workload split-
ting transparently without loss of performance [11]. The
high-level nature of the modernized version allows it to
seamlessly capitalize on the strengths of different hardware
architectures. For example, the modernized streamcluster
executed on a GPU is 56% faster than the original Pthreaded
version executed on a 12-core CPU, which already offered a
9.6x speed up over a sequential baseline (see Section 6.3).

3 Dynamic Dataflow Graphs
The program representation in our pattern finding analysis
is the dynamic dataflow graph (DDG), which can be seen as

a dynamic dependency graph without control-flow informa-
tion. More formally, a DDG is a directed acyclic graph where
nodes correspond to specific executions of operations and
there is an arc ⟨𝑢, 𝑣⟩ for each operation execution 𝑣 using
a value defined by operation execution 𝑢 [33]. DDGs differ
from static dataflow graphs common in compilers in that in
the former each node represents a single operation execu-
tion, whereas in the latter each node represents all possible
operation executions. DDGs are an appealing representation
for pattern finding, as they are recognized to capture the
“essence of a program’s computation” [33].

Our DDG nodes correspond to (executions of) operations
from a compiler intermediate representation (IR). Using an
IR allows us to handle different programming languages
while retaining the ability to point to the exact location of
the found patterns in the source code. Besides IR operations,
the DDG contains nodes for calls to standard functions such
as pthread_create().
A desirable property of DDGs is to capture the computa-

tion that potentially characterizes the parallel patterns while
abstracting away pattern-independent computation such as
data transfer operations, memory address calculations, and
data structure traversals. By construction, the DDG does
not contain any notion of data location, and hence abstracts
away data transferring. The effect of data transfer operations
is only reflected implicitly on the shape of the DDG. Mem-
ory address calculations and data structure traversals are
identified and removed during pattern finding as described
in Section 5.

DDGs are generated by instrumenting and executing the
program under analysis. During execution, the operations
that define and use each value are traced. The tracing process
is supported by a shadow memory that records the node that
has defined the current value in each memory location [33].
Accesses to the shadowmemory are synchronized to support
seamless generation of DDGs from multi-threaded programs.

4 Pattern Definitions
This section defines the patterns studied in the paper (map,
linear/tiled reduction, and linear/tiledmap-reduction) as collec-
tions of subgraphs of DDGs that satisfy specific constraints.
The patterns are introduced incrementally, starting with the
definition of abstract patterns (Section 4.1); following with
the definition of map as a basic pattern (Section 4.2); contin-
uing with the definition of linear reduction as a basic pattern
and tiled reduction as composition of linear reductions (Sec-
tion 4.3); and finishing with the definition of linear/tiled
map-reduction as compositions of maps and reductions (Sec-
tion 4.4). Figure 3 illustrates the structure of these patterns.
The patterns are defined in a general form. Our pattern

finder (Section 5), implements each definition as a combina-
torial model with finite-domain variables and constraints.
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Figure 3. Patterns as DDGs. Left: linear map-reduction over 𝑛 data elements (1) as a composition of a map (2) and a linear
reduction (3).Right: tiled map-reduction over 𝑛 data elements (1) as a composition of a map (2) and a tiled reduction (3), which
is composed of𝑚 linear reductions (4.1), (4.2), . . . , (4.𝒎) of 𝑝 components each and a linear reduction (5) of𝑚 components.

All definitions assume a dynamic dataflow graphDDG where
each node 𝑢 is labeled with its operation operation(𝑢).

4.1 Patterns
Abstract patterns are groups of repeated operation execu-
tions. A pattern P within DDG is a sequence of components
(P1, P2, . . . , P𝑛) subject to the constraints specified in (1a-1e).
Each component is an inducedDDG subgraph (1a), formed

by a subset of the nodes ofDDG and all arcs between nodes in
that subset. Components of a pattern do not share nodes (1b).
Each component captures a particular repetition of the exe-
cution of the same operations; this is modeled by requiring
that all components are isomorphic when they are labeled
with the operation of each node (1c). The operations exe-
cuted within each component must be related by their data
flow; this is modeled by requiring that each component is
weakly connected, that is, its corresponding undirected graph
is connected (1d). Finally, patterns are convex in the sense that
all paths between pattern nodes are internal to the pattern.
This is modeled by forbidding pairs of nodes in P that both
reach and are reached by nodes in DDG but not in P (1e).

pattern(P,DDG) ⇐⇒
∀c∈P : induced-subgraph(c,DDG) (1a)
∧ ∀𝑖, 𝑗 ∈ [1, 𝑛] | 𝑖 ≠ 𝑗 : nodes(P𝑖 ) ∩ nodes(P𝑗 ) = ∅ (1b)
∧ ∀c, c′ ∈P : isomorphic(c, c′, operation) (1c)
∧ ∀c∈P : weakly-connected (c) (1d)
∧ ∀𝑢,𝑤 ∈ nodes(∪c∈P c),∀𝑣 ∈ nodes(DDG − ∪c∈P c) :
¬ (reaches(𝑢, 𝑣) ∧ reaches(𝑣,𝑤)) (1e)

4.2 Map Patterns
Map patterns apply an independent operation over multiple
data elements. A map M = (M1,M2, . . . ,M𝑛) within DDG is
a pattern specialization (2a) subject to component indepen-
dence and input/output constraints as specified in (2b-2d).
Component independence is modeled by forbidding arcs

between components (2b); transitive dependencies between
components are prevented by pattern convexity (1e). Each
map component takes an input data element and produces an
output data element. This is modeled by requiring that each
component has incoming (2c) and outgoing (2d) arcs. Mul-
tiple incoming and outgoing arcs are permitted to capture
maps over non-scalar data.

map(M,DDG) ⇐⇒
pattern(M,DDG) (2a)
∧ ∀𝑖, 𝑗 ∈ [1, 𝑛] | 𝑖 ≠ 𝑗, � ⟨𝑢, 𝑣⟩ ∈ arcs(DDG) :

𝑢 ∈ nodes(M𝑖 ) ∧ 𝑣 ∈ nodes(M𝑗 ) (2b)
∧ ∀c∈M, ∃ ⟨𝑢, 𝑣⟩ ∈ arcs(DDG) :

𝑢 ∉ nodes(c) ∧ 𝑣 ∈ nodes(c) (2c)
∧ ∀c∈M, ∃ ⟨𝑢, 𝑣⟩ ∈ arcs(DDG) :

𝑢 ∈ nodes(c) ∧ 𝑣 ∉ nodes(c) (2d)

Map variants. A conditional map is a special variant of
the map pattern where components might produce output
or not depending on a condition tested within the map oper-
ation. Conditional maps are modeled as regular maps except
that only some of their components have outgoing arcs.
A fused map is a special map case consisting of two or

more chained maps over the same data elements. Fusing
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maps (sometimes referred to as code fusion) improves paral-
lel efficiency by reducing synchronization and communica-
tion costs [31]. The map definition provided above readily
captures fused maps of arbitrary size.

4.3 Reduction Patterns
Reduction patterns combine multiple data elements by ap-
plying an associative reduction operator to all elements. The
associativity of the reduction operator introduces a large de-
gree of freedom in the way reductions are arranged, which
can be exploited for parallelization. This section defines two
common reduction variants: linear and tiled reductions.

Linear reductions. Linear reductions apply the reduc-
tion operator in a single pass over all data elements. This pat-
tern arises typically from sequential implementations [31].
A linear reduction R = (R1, R2, . . . , R𝑛) within DDG is a

pattern specialization (3a) subject to component associativ-
ity, component chaining, and input/output constraints as
specified in (3b-3f). Although the most common reduction
operators are formed by a single operation (for example,
integer addition), the definition provided in this paper al-
lows capturing arbitrary reduction operators with multiple
operations (for example, complex number addition).
Linear reduction components are required to be associa-

tive for efficient parallelization. The associativity test con-
siders the dataflow structure of each component and the un-
derlying operations of each node (3b). Commutativity might
be modeled in a similar way, if required. The components
of a linear reduction are structured as a chain, where each
component in the chain defines data that is used by the next
component only. This is modeled by requiring that all nodes
in a component reach the nodes in the next component in
the chain (3c), and forbidding arcs between non-consecutive
components (3d). Besides the chain structure, each compo-
nent takes an input data element, and the final component
produces an output data element. This is modeled by requir-
ing that each component has incoming arcs (3e) and the last
component has outgoing arcs (3f).

linear-reduction(R,DDG) ⇐⇒
pattern(R,DDG) (3a)
∧ ∀c∈R : associative(c, operation) (3b)
∧ ∀𝑖 ∈ [1, 𝑛 − 1],∀𝑢 ∈R𝑖 ,∀𝑣 ∈R𝑖+1 : reaches(𝑢, 𝑣) (3c)
∧ ∀𝑖, 𝑗 ∈ [1, 𝑛] | |𝑖 − 𝑗 | > 1, � ⟨𝑢, 𝑣⟩ ∈ arcs(DDG) :

𝑢 ∈ nodes(R𝑖 ) ∧ 𝑣 ∈ nodes(R𝑗 ) (3d)
∧ ∀c∈R, ∃ ⟨𝑢, 𝑣⟩ ∈ arcs(DDG) :

𝑢 ∉ nodes(c) ∧ 𝑣 ∈ nodes(c) (3e)
∧ ∃ ⟨𝑢, 𝑣⟩ ∈ arcs(DDG) :

𝑢 ∈ nodes(R𝑛) ∧ 𝑣 ∉ nodes(R𝑛) (3f)

Tiled reductions. Tiled reductions apply the reduction
operator in two phases: the first phase (partial reduction) com-
putes a set of partial combinations, and the second phase
(final reduction) combines the partial combinations into a
single element. Tiled reduction can be seen as a compound
pattern based on multiple linear reductions. This pattern
arises often, but not exclusively, from the standard paral-
lelization of a reduction, where multiple partial reductions
are computed in parallel, and the partial results are combined
sequentially in a final reduction [31].

A tiled reduction within DDG is a tuple ⟨RP, RF⟩ where RP
is a sequence of linear reductions (RP1, RP2, . . . , RP𝑚) (4a)
of 𝑝 components each, RF is also a linear reduction (4b), and
both are subject to operation isomorphism and reduction
channeling constraints as specified in (4c-4e).
In a tiled reduction, all partial and final reductions apply

the same reduction operator, even if they might be imple-
mented in different source locations. This is modeled by
requiring that all components within all partial and final
reductions are isomorphic when they are labeled with the
operation of each node (4c). Finally, in this pattern each par-
tial reduction produces an output data element that is taken
as input by a specific component of the final reduction. This is
modeled by requiring that all nodes in the last component of
each partial reduction can reach the nodes of its correspond-
ing component in the final reduction (4d), and forbidding all
other arcs between partial and final reductions (4e).

tiled-reduction(⟨RP, RF⟩ ,DDG) ⇐⇒
∀R∈RP : linear-reduction(R,DDG) (4a)
∧ linear-reduction(RF,DDG) (4b)
∧ ∀c, c′ ∈ (∪R∈RP R) ∪ RF : isomorphic(c, c′, operation) (4c)
∧ ∀𝑖 ∈ [1,𝑚],∀𝑢 ∈ nodes(RP𝑖𝑝 ),∀𝑣 ∈ nodes(RF𝑖 ) :

reaches(𝑢, 𝑣) (4d)
∧ ∀𝑖, 𝑗 ∈ [1,𝑚] | 𝑖 ≠ 𝑗, � ⟨𝑢, 𝑣⟩ ∈ arcs(DDG) :

𝑢 ∈ nodes(RP𝑖𝑝 ) ∧ 𝑣 ∈ nodes(RF𝑗 ) (4e)

4.4 Map-Reduction Patterns
Map-reduction patterns fuse map and reduction patterns,
potentially improving parallel efficiency by reducing syn-
chronization and communication costs. This opportunity
arises often enough in practice that many pattern libraries
provide specific abstractions or optimizations [31]. Analo-
gously to Section 4.3, this section defines linear and tiled
map-reductions. Their formal definitions simply enforce a
consistent interface between their map and reduction com-
ponents, and are provided as supplementary material at
https://github.com/robcasloz/llvm-discovery.

Linear map-reductions. A linear map-reduction within
DDG is a tuple ⟨M, R⟩ where M is a map, R is a linear re-
duction, and each map component produces an output data

https://github.com/robcasloz/llvm-discovery
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Figure 4. Overview of the iterative pattern finder.

element that is only taken as input by its corresponding
reduction component.

Tiledmap-reductions. A tiledmap-reductionwithinDDG
is a tuple ⟨M, ⟨RP, RF⟩⟩ where M is a map, ⟨RP, RF⟩ is a tiled
reduction, and each map component produces an output
data element that is only taken as input by its corresponding
partial reduction component.

5 Iterative Pattern Finder
From a computability perspective, the patterns considered in
this paper can be found on a given DDG by simply searching
for all its subgraphs that satisfy the constraints in Section 4.
Unfortunately, the size of the DDGs and the computational
complexity of constrained subgraph matching render this
direct approach impractical for all but the smallest problems.
This section introduces a pattern finder that detects patterns
underlying actual legacy sequential and parallel programs
in a practical amount of time.
Figure 4 and Algorithm 1 outline our pattern finder. The

pattern finder takes as input a DDG generated by tracing
the program under analysis and a set of pattern definitions,
and outputs a set of patterns found on the DDG. First, the
DDG is reduced by a range of simplifications (line 1). The
simplified DDG is then decomposed into a set of smaller sub-
DDGs (line 2), based on the observation that most patterns
are localized in specific regions of the DDG. Each of the
decomposed sub-DDGs is compacted by grouping nodes
with common features (line 3), and stored in a pool of sub-
DDGs (line 4). The latest sub-DDGs added to the pool are
marked as active. Each active sub-DDG in the pool is fed into
a constraint solver that, according to a combinatorial model
of each of the pattern definitions, searches for matching
pattern subgraphs (line 7).
The matched patterns are used as feedback to generate

new sub-DDGs that are stored in the pool, marked as ac-
tive, and fed into the constraint solver, in an iterative scheme

Algorithm 1: Iterative pattern finding. Sets of DDGs
or pattern definitions are given capital letters; single
elements are given lowercase letters.

Input :A DDG 𝑔in, a set D of pattern definitions.
Output :A set of found patterns.
// Simplify and decompose 𝑔in into a set of sub-DDGs.

1: 𝑔s ← simplify(𝑔in);
2: G ← decompose(𝑔s);

// Compact each decomposed sub-DDG.

3: 𝐺 ′← {compact(g) | g ∈ G};
// Initialize sub-DDG pool P and active subset 𝐴 ⊆ P.

4: P ← 𝐺 ′; 𝐴← 𝐺 ′;
// Initialize set of found patterns.

5: F ← {};
// Match active sub-DDGs against pattern definitions,

generate new active sub-DDGs by combining found

patterns with already visited sub-DDGs, and repeat

until no more active sub-DDGs are generated.

6: do
// Match sub-DDGs against pattern definitions.

7: 𝑀 ← {g | g ∈ 𝐴, d ∈ D,match(g, d)};
// Store found patterns (matched sub-DDGs).

8: F ← F ∪𝑀 ;
// Subtract new matches to pool sub-DDGs.

9: 𝐴𝑆 ← {subtract(𝑔,𝑔′) | 𝑔 ∈ P, 𝑔′ ∈ 𝑀};
// Fuse pool sub-DDGs and new matches.

10: 𝐴𝐹 ← {fuse(𝑔,𝑔′) | 𝑔 ∈ P, 𝑔′ ∈ 𝑀,

adjacent(𝑔,𝑔′), compatible(𝑔,𝑔′)};
// Set new, unvisited sub-DDGs as active.

11: 𝐴← (𝐴𝑆 ∪𝐴𝐹 ) − P ;
// Store new active sub-DDGs.

12: P ← P ∪𝐴;
13: while |𝐴| > 0;

// Merge and return the found patterns.

14: return merge(F);

(lines 6-13) that proceeds until a fixpoint is reached. Each iter-
ation generates new sub-DDGs by applying subtraction and
fusion operations to pairs of matched and previously gener-
ated sub-DDGs (lines 9-10). This is based on the observation
that the difference between sub-DDGs might expose new
patterns (such as maps in complex loops), and that patterns
such as map-reductions can be found by fusing simpler pat-
terns such as maps and reductions. As seen in Algorithm 1,
subtraction and fusion are independent operations and can
be computed in parallel.
The iterative scheme (lines 6-13) is guaranteed to termi-

nate: the sub-DDG pool does not admit duplicates, so in the
worst case the algorithm will terminate when all DDG sub-
graphs (a finite set) are explored. In practice (Section 6), only
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Figure 5. Compact sub-DDGs corresponding to the DDG in
Figure 2c. mp and f are loop DDGs, r is an associative com-
ponent DDG. The lettersm, r, p, and f are used to abbreviate
map, reduction, partial reduction, and final reduction.

a few iterations are usually required. After reaching a fix-
point, the matched patterns are merged across all sub-DDGs,
and the resulting patterns are reported to the user, together
with their exact source code location (line 14).

DDG Simplification. This phase removes memory ad-
dress calculations and data structure traversals from the
DDG to improve scalability. Memory address calculations
are identified directly on the DDG, whereas linked and array
data structure traversals are identified by generalized iterator
recognition analysis [29] on the IR. This type of computation
does not generally characterize a pattern in our representa-
tion, so removing it from the DDG preserves the information
needed for pattern finding. In our experiments (Section 6),
simplification reduces the size of DDGs by 3.82x on average.

DDG Decomposition. This phase partitions the simpli-
fied DDG into a set of sub-DDGs on which patterns can be
found more easily. The union of the patterns found in the
sub-DDGs approximates the patterns that could be found in
the entire DDG. The decomposition is applied across two
dimensions: loops and associative components.
Loop DDGs capture the computation within the dynamic

scope of each loop. Loop decomposition aims at finding pat-
terns based on single loops such as simple maps and linear
reductions. Loops are a natural target for pattern finding, as
they are the main repetition mechanism in imperative pro-
gramming and capture most of a program execution time.
Associative component DDGs are weakly connected com-

ponents with nodes of specific associative operations. Asso-
ciative component decomposition aims at finding patterns
such as linear and tiled reductions, whose components are
connected and often formed by single associative operations.
Figure 5 shows the result of decomposing the DDG in

Figure 2c. The resulting set of sub-DDGs includes two loop
DDGs (mp, f) and an associative component DDG (r). In later
phases of the pattern finder, loop and associative component
sub-DDGs are subtracted (to expose new patterns such as
maps hidden in complex loops) and fused (to find more com-
plex patterns such as fused maps and map-reductions).

DDG Compaction. This phase collapses all nodes exe-
cuted within each iteration of a loop DDG into single nodes.
The resulting compact loop DDG has one node per iteration,
and arcs corresponding to dataflow across iterations. The
combination of decomposition and compaction is critical for
scalability: in our experiments, disabling these two phases
causes the constraint solver to exhaust its memory limit
(32 GB) and fail for even the smallest benchmark.

In the running example (Figure 5), mp is compacted: it
groups each subgraph resulting from a dist() call with its
corresponding partial reduction (+) into a single node.

Pattern Matching. This phase searches, within each ac-
tive sub-DDG in the pool, for pattern subgraphs that conform
to Section 4’s definitions.

The pattern definitions are implemented as combinatorial
models with finite-domain variables and constraints [40].
This allows us to leverage the power of modern constraint
solving and scale beyond tiny DDGs. For practical reasons,
the models are implemented over sets of nodes rather than
subgraphs. Hence, the primary variables are the sets of nodes
within each pattern component. The constraint solver is
given the task to find assignments of sets of nodes to com-
ponents that satisfy the constraints in Section 4.

The isomorphism (1c, 4c), connectivity (1d), and associativ-
ity (3b) constraints are too costly to bemodeled directly in the
standard combinatorial modeling framework, and are thus
approximated. Isomorphism and connectivity constraints
are approximated using relaxations. In our experiments, this
approximation does not lead to violations of the original
pattern definitions. Associativity constraints in reductions
are enforced by limiting each component to a single node
whose operation is known to be associative. This underap-
proximation does not lead in practice to missing reduction
patterns, as these often use simple operators such as addi-
tion or multiplication. Testing associativity automatically is
generally hard, but the approximation could be refined [31].

Table 1 shows the result of applying pattern matching and
the remaining phases to the sub-DDG pool in Figure 5.

DDG Subtraction. This phase computes the difference
between each pool sub-DDG and each matched sub-DDG,
that is, the graph induced by the difference of their nodes.
The resulting sub-DDGs are stored back in the pool as ac-
tive. Subtraction exposes additional patterns hidden by com-
paction, for example in loops that fuse multiple patterns.
Table 1 shows the result of applying subtraction in each

iteration of the example. In it. 1, subtraction generates two
sub-DDGs (m and p). The sub-DDG m is particularly useful,
as it exposes a map pattern in the first loop by removing
the partial reduction dataflow originally present in the loop.
Exposing the map pattern, in its turn, enables finding the
larger map-reduction pattern in the next iteration.
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Table 1. Result of each pattern finding phase, starting from
the sub-DDG pool in Figure 5. Active sub-DDGs (match-
ing candidates) are colored in black, inactive sub-DDGs are
colored in gray, and reported patterns are marked in bold.

it. sub-DDG pool phase result

1 {mp, f, r} match f: linear reduction,
r : tiled reduction

{mp, f, r} subtract m = subtract(mp, r),
p = subtract(r, f )

{mp, f, r} fuse -
2 {mp, f, r,m, p} match m: map
{mp, f, r,m, p} subtract -
{mp, f, r,m, p} fuse mr = fuse(r,m)

3 {mp, f, r,m, p,mr} match mr : tiled map-reduction
{mp, f, r,m, p,mr} subtract -
{mp, f, r,m, p,mr} fuse -
{mp, f, r,m, p,mr} merge mr: tiledmap-reduction

DDG Fusion. This phase computes the union of pool sub-
DDGs and matched sub-DDGs, that is, the subgraph of the
original DDG induced by the union of the nodes in both sub-
DDGs. The resulting sub-DDGs are stored back in the pool
as active. For efficiency, fusion is restricted to sub-DDG pairs
adjacent in the original DDG (all arcs from one flow into the
other) and where compatible patterns (a map flowing into
any pattern) have been matched. Combined with the itera-
tive scheme, fusion enables finding combinations of maps,
reductions, and map-reductions of arbitrary complexity.
Table 1 shows the fusion result in each iteration of the

example. In it. 2, fusion generates a new sub-DDG (mr) from
r and m. This fusion is possible because m and r are adja-
cent (all arcs from m flow into r in the original DDG from
Figure 2c) and match compatible patterns (m is known from
it. 2 to match a map pattern, and r is known from it. 1 to
match a tiled reduction pattern).

Pattern Merging. This phase combines all matched pat-
terns into a final set to be reported to the user. Smaller pat-
terns subsumed by larger patterns are discarded from the
final set. For example, the linear reduction, tiled reduction,
and map patterns matched in its. 1-2 (Table 1) are discarded,
as they are subsumed by the tiled map-reduction pattern.

6 Experimental Evaluation
This section reports experimental results on the effectiveness,
scalability, and potential benefits of our analysis.

Figure 6. Screenshot of a pattern finder report.

Implementation. The instrumenting compiler is imple-
mented using LLVM [26] v7, hence our DDG nodes corre-
spond to executions of LLVM IR operations. The instrumen-
tation pass and runtime support reuse LLVM’s DataFlowSan-
itizer dynamic analysis framework [44]. Our implementation
extends this framework with ∼700 additional C/C++ LOC,
including runtime calls on the execution of each LLVM IR
operation and on loop boundaries, and runtime support to
trace the dynamic loop scope of each DDG node. In our
experiments, tracing takes a negligible amount of time com-
pared to pattern finding. Hence, we have not yet had to apply
advanced tracing techniques such as those of Kim et al. [22].

The pattern finder is implemented in ∼2400 Python LOC,
and run in parallel whenever possible. The pattern defini-
tions are implemented in the MiniZinc constraint modeling
language [35] (∼600 LOC), and matched using the Chuffed
solver [10] v0.10. A time limit of 60 seconds is used for each
solver run; increasing it did not yield additional patterns.
Our implementation outputs HTML reports where the

found patterns are highlighted in the source code, as shown
in Figure 6. The instrumented compiler and the pattern finder
are available at https://github.com/robcasloz/llvm-discovery.

Setup. The evaluation is based on Starbench [2], a parallel
C/C++ benchmark suite that covers a broad range of appli-
cation domains and includes a sequential and an optimized
Pthreads version of each benchmark. Compared to other par-
allel benchmark suites such as PARSEC [6], Starbench uses
Pthreads as the primary parallel programming model and
hence it better represents legacy parallel code. The evalua-
tion includes all benchmarks in the suite except bodytrack
and h264dec, which follow patterns (pipelines) out of our
current scope. Effectiveness is evaluated with respect to the
patterns found by earlier manual studies [2, 11]. For pattern
finding, input parameters have been chosen that exercise
the main computation of each benchmark while yielding

https://github.com/robcasloz/llvm-discovery
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Table 2. Input parameters for each Starbench benchmark.

benchmark input parameters

{c-ray, analysis 7 objects, 8×4 pixels
ray-rot} reference 192 objects, 1920×1080 pixels

md5
analysis 4 buffers, 2×2 B/buffer
reference 128 buffers, 1024×4096 B/buffer

{rgbyuv,
rotate,
rot-cc}

analysis 4×4 pixels
reference 8141×2943 pixels

kmeans
analysis 8 pt., 2 dim., 2 clusters
reference 17695 pt., 18 dim., 2000 clusters

streamc.
analysis 4 pt., 2 dim., 2 clusters
reference 200000 pt., 128 dim., 20 clusters

small DDGs. Table 2 details the parameters chosen for pat-
tern finding in comparison to the reference parameters in
Starbench. The chosen parameters are, on average, three
orders of magnitude smaller than the reference input.

The pattern finding evaluation uses an Intel Xeon E5-2680
v3 architecture with 12 CPU cores and 64 GB of main mem-
ory. The portability study (Section 6.3) complements this
CPU-centric architecture (which also has a low-end NVIDIA
NVS 310 GPU) with a GPU-centric architecture that has only
4 CPU cores (Intel Core i7-4770) but a high-end NVIDIA
GeForce GTX Titan GPU. All time measurements correspond
to the median of 20 repetitions, where all repeated measure-
ments exhibit a robust coefficient of variation [43] (interquar-
tile range relative to the median) of less than 10%.

6.1 Pattern Finding Effectiveness
Our pattern finder detects 86% of the 42 Starbench patterns
reported by earlier manual studies [2, 3, 11]. Table 3 lists the
36 patterns found and six patterns missed for the sequential
and Pthreads version of each Starbench benchmark.
Among the 36 found patterns, 27 are found in the first

iteration, seven are found in the second iteration, and the
remaining two are found in the third iteration. The seven
patterns found in the second iteration can be put into two
classes: (conditional) maps in ray-rot and streamcluster
that result from subtracting first-iteration reductions to loop
DDGs (as exemplified in Table 1, it. 2), and fusedmaps in rot-
cc that result from fusing simpler first-iteration maps. The
two patterns found in the third iteration in streamcluster
are map-reductions that result from fusing first-iteration
reductions with second-iteration maps (as exemplified in
Table 1, it. 3). In summary, most patterns are found in the
first iteration, and the remaining iterations find increasingly
fewer, but larger and potentially more profitable patterns.

30 of the found patterns are maps, of which 11 are condi-
tional maps and two are fused maps. Conditional maps arise,

Table 3. Found and missed parallel patterns in Starbench;
m, c, f, and r stand for map, conditional, fused, and reduction
(linear reduction for sequential and tiled reduction for Pthread
benchmarks). Final reported patterns are highlighted in bold.

bench. version found missed
it. 1 it. 2 it. 3

{c-ray,
md5,
rgbyuv}

(both) m - - -

rotate (both) cm - - -
kmeans (both) r - - m1, mr2

rot-cc (both) m, cm fm - -

ray-rot
seq. m, cm - - fm3

Pthr. cm m - fm3

streamc. (both) m, cm×3, r m, m mr -
1Pattern output identified as an address calculation and simplified away.
2Missed underlying maps.
3Loops of the underlying maps have mismatching iteration spaces.

for example, in the rotation computation in rotate, rot-cc,
and ray-rot, where input pixels are transformed and out-
put only if they appear in the final rotated image. The two
fused maps arise naturally in rot-cc from the composition
of rotation and color transformation computations applied
to each pixel in the input image. Remarkably, the fused maps
combine loops located in different translation units. The four
reductions found in kmeans and streamcluster correspond
to additions of distances or coordinates of individual points.
Finally, the two map-reductions found in streamcluster
combine the computation of distances between points (map)
with their addition (reduction) as illustrated in Section 2.

The six missed patterns illustrate two current limitations
in our heuristics. The first one affects the twomaps in kmeans
and inhibits finding their encompassing map-reductions,
which form the core of the kmeans computation. The map
pattern computes the index of the cluster assigned to each
point. These indices are used exclusively in memory address
calculations which are simplified away by the DDG sim-
plification phase. This simplification removes the outgoing
arcs from the candidate map pattern and precludes match-
ing it, which in its turn precludes finding the encompassing
map-reduction. The second limitation concerns the two miss-
ing fused maps in ray-rot. The loops corresponding to the
underlying maps have mismatching iteration spaces: the ray-
tracing loop ranges over the dimensions of the generated
image, whereas the rotation loop ranges over the (larger) di-
mensions of the rotated image. This mismatch results in loop
DDGs with different number of nodes, the fusion of which
is not recognized as a fused map by the pattern finder. These
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Figure 7. Pattern finding time by DDG size.

two limitations are not fundamental issues in our core ap-
proach, but rather restrictions imposed by the simplification
and decomposition heuristics introduced in Section 5.

Remarkably, the same patterns are found in both versions
of all benchmarks. This shows that our analysis is oblivious
to whether the code is sequential or parallel.

Accuracy. The pattern finder reports 50 additional pat-
terns besides those in Table 3. A manual analysis of the
additional patterns reveals that our approach is highly ac-
curate, while confirming the need for human intervention:
48 of the 50 additional patterns are true patterns (they apply
to any program input), whereas the remaining two are false
patterns that only apply to the input used for pattern finding.

The 48 true patterns are formed by (conditional) maps (36),
reductions (11), and one map-reduction. As can be expected
from a well-studied suite such as Starbench, the additional
patterns are in general unlikely to yield parallelization profit.
The most remarkable cases are nested maps (for example in
c-ray and ray-rot) that are not parallelized in the Pthreads
versions but might be parallelized profitably on architectures
that benefit from finer granularity, such as GPUs.

The two false patterns are maps in streamcluster. These
patterns are reported on loops which also contain a condi-
tional reduction that is not triggered by the program input.
As a result, no dependency is registered across loop iter-
ations, the component independence constraints (2b) are
satisfied, and a map pattern is matched and reported.

6.2 Pattern Finding Scalability
Our pattern finder detects the patterns reported in Table 3
in seconds to minutes. Figure 7 shows pattern finding time,
including tracing, for each benchmark version by DDG size.
The results indicate that our pattern finder scales linearly
with DDG size, as indicated by the dashed bounds in Figure 7.
Other factors such as the number of distinct executed loops
are also likely to affect pattern finding time.
Tracing and matching take 1% and 48% of the total time.

The remaining 51% is spent on the other pattern finding
phases, which have low computational complexity. This sug-
gests that there is ample opportunity for optimization.
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Figure 8. Speedup of Pthreads legacy, modernized, and Ro-
dinia streamcluster on two architectures. The baseline is
sequential execution time on the CPU-centric architecture.

Pthreads versions yield DDGs that are on average 15%
larger than their corresponding sequential versions, resulting
in an average pattern finding slowdown of 28%.

6.3 Portability of the Modernized Code
This section studies the modernization of Pthreaded stream-
cluster as a demonstration of the benefits of applying our
analysis to legacy parallel code. streamcluster is among
the most complex benchmarks in Starbench, both in lines of
code and in number and diversity of parallel patterns. The
eight patterns found in this benchmark have been ported
manually to SkePU, a parallel pattern library [36]. Automat-
ing the port itself is part of future work. The ported code is
freely portable across CPUs and GPUs at execution time.
Figure 8 shows the parallel speedup of different paral-

lelizations of streamcluster executed with its reference
input on the two evaluation architectures. The results show
that modernized code can leverage the resources of different
hardware architectures and compete with implementations
that are hand-tuned for a specific architecture. On the CPU-
centric architecture the modernized version (executed on
the CPU) achieves a speedup (9.6x) comparable to that of the
legacy Pthreads version (10x). The GPU in this architecture
has few cores and lowmemory bandwidth, which is reflected
on the poor speedup (2.4x) achieved by a native CUDA im-
plementation from the Rodinia benchmark suite [9].
The portability benefits of the modernized version are

clearly seen when executing the same versions on a GPU-
centric architecture. Here, the legacy Pthreads version per-
forms poorly (4.3x) due to the low number of CPU cores,
while the modernized version achieves the best speedup
(15.6x) by fully exploiting the computational power of the
GPU. Interestingly, while Rodinia’s version also improves
significantly on this architecture, it does not exploit the GPU
to the same extent, and only achieves a speedup of 7.1x. The
poorer performance of Rodinia’s version compared to our
modernized version might be due to Rodinia’s use of specific
optimizations and parameters for the GPU (NVIDIA GTX
280) that the code was originally written for.
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7 Related Work
There is a large body ofwork on automatic and semi-automatic
parallelization of sequential legacy code [32, 39], employing
complex static and dynamic analysis to discover opportuni-
ties for simple do-all parallelism within sequential loops. In
contrast, analysis of parallel code and discovery of parallel
patterns are relatively unexplored areas.

Pattern Finding. Paraprox [42] analyzes OpenCL/CUDA
kernels to detect the presence of six parallel patterns (map,
scatter/gather, reduction, scan, stencil, partition). The analy-
sis is used to transform the code into faster versions using
approximation techniques in domains where these are ac-
ceptable. The recognition phase relies heavily on the highly
structured nature of GPU kernels. In contrast, our analysis is
fundamentally source independent, with any source-related
techniques being merely performance enhancing heuristics.

Pattern detection has been exploited without subsequently
tying back to the source code. Poovey [37] and Deniz [13]
instrument parallel code with low-level counters and sta-
tistically correlate these to profiles of code representative
of predefined patterns. The results are used to select archi-
tectural and low-level system software policies. Since the
pattern analysis is statistical, the selected policies can only
be allowed to impact performance, not correctness. The pat-
terns identified are soft, in the style of Mattson [30], i.e. they
capture informal characteristics of the algorithms and cannot
be tied back to the source code. The technique has also been
applied to synthetic benchmark generation, following the
statistical profile of predefined pattern representatives [14].
Patterns can also be detected in legacy message-passing code
[23, 24, 38]. A typical application is to find collective opera-
tions such as broadcasts, which the programmer has hand-
coded with point-to-point operations. Detected instances are
replaced with calls to a highly tuned collective library.

Dynamic Analysis. Dynamic Dataflow Graphs were in-
troduced in Redux [33] and applied to debugging and slicing
of sequential programs (see Section 3). Tracing and dynamic
profiling have been used to capture application properties
for benchmark characterization [15], collaborative runtime
verification [7] and dynamic program optimization [5].

In common with our trace-then-match strategy, both [41]
and [20] build dynamic graphs but aggregate data and control-
flow information from multiple executions into single nodes.
This assists with compaction and hence graph size, but is in
tension with the discovery of less regular patterns. These ap-
proaches are only applicable to sequential code. DiscoPoP [28]
builds upon Valgrind [34] to trace and build a dataflow anal-
ysis of executing sequential code, to determine the potential
presence of simple parallel-do parallelism. Similarly, Par-
wiz [21] combines static and trace-driven dynamic analysis
to provide parallelization hints to the programmer. Both Dis-
coPoP and Parwiz focus on detecting parallel-do parallelism.

This limited scope allows them to aggregate all executions
of each operation in their trace representation and to resort
to custom greedy algorithms as opposed to more general
constrained matching methods. Poly-Prof [17] is based in
the polyhedral idiom, strengthening inter-procedural analy-
sis through compact tracing, and feeding into a polyhedral
compiler. Tracing has also been used to detect the poten-
tial presence of structured pipeline parallelism in sequential
loops [46, 47]. All of these projects use dynamic tracing to
augment static analysis, and are consequently, like our work,
programmer-advisory in nature. The work on collective op-
eration finding in MPI programs discussed above [23, 24, 38]
dynamically traces point-to-point message passing calls.

8 Limitations
The design choices of using DDGs and applying the heuris-
tics from Section 5 are key for effective and efficient pattern
finding, but at the same time impose a number of limitations.
The main limitation of DDGs is that their size is propor-

tional to execution time. Hence, input parameters need to
be chosen carefully to exercise sufficiently a program during
short executions. Such parameters might be readily available,
for example, in the program’s test suite. Otherwise, symbolic
methods could be applied [4]. Another limitation of DDGs
is the inability to match patterns based on computations
such as swaps or min/max calculations, which are typically
expressed as conditional data transfer operations. This limi-
tation could be mitigated by applying if-conversion [1]. The
limitations of the pattern finder heuristics, discussed in Sec-
tion 6.1, could be mitigated by further refinements.

9 Conclusion and Future Work
This paper has introduced a dynamic analysis for modern-
izing legacy sequential and parallel code through parallel
pattern finding. Experiments on Starbench benchmarks show
that our analysis finds patterns effectively, accurately, and
efficiently in legacy Pthreaded C/C++ code, and demonstrate
how our approach facilitates re-targeting such code to ex-
ploit increasingly heterogeneous hardware.
Future work includes: addressing the limitations in Sec-

tion 8; unifying the definition of linear and tiled patterns;
characterizing more parallel patterns such as pipeline and
stencil; further exploiting the dynamic nature of our analysis
to propose partial patterns (which only apply under certain
execution conditions) and quasi-patterns (which might be
converted into patterns by simple transformations); and im-
proving the scalability of the pattern finder with techniques
from constraint modeling [40], frequent pattern mining [18],
graph query processing [27], or instruction selection [19].
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