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1 INTRODUCTION
Parallelization traditionally refers to the challenge of analyzing
legacy sequential code, to generate equivalent, higher perform-
ing parallel code. Emerging mainstream parallelism has created a
new challenge: legacy parallel code, typically hand-optimized for a
particular system, becomes outdated as the hardware evolves. Mod-
ernizing such code line-by-line is not effective: instead we need to
understand the program’s overall algorithmic intent, to re-express
it for the new target. Re-expression can be simplified and future-
proofed by coding with parallel patterns [4, 8, 9]. We address the
remaining challenge of identifying the algorithm patterns in the
original parallel source. We describe a novel dynamic approach to
the identification of implicit algorithmic patterns. Our core princi-
ple is that the essence of a pattern is to be found in the dynamic data
flows it invokes between operations and their repetition, rather
than any specific source level encoding. This makes it neutral with
respect to source code and hence immediately applicable to both
legacy sequential and parallel code.

The high level structure of our approach is captured in Figure 1.
Our LLVM pass instruments the legacy program, whose traced exe-
cution generates a dynamic dataflow graph (DDG). Our constraint-
programming based pattern finding tool analyzes the DDG against
a library of pattern definitions, reporting found instances back to
the programmer.

2 PARALLEL PATTERN FINDING
Figure 2 steps through our approachwith an example extracted from
a legacy parallel program, streamcluster, from the PARSEC [2]
benchmark suite. The algorithm underlying streamcluster ap-
plies the MapReduce pattern [4]. Figure 2a shows key excerpts
from the original code, including the threading infrastructure (note
that function pkmedian is invoked by each thread in parallel), and
highlighted, the key data operations which implicitly encode the
pattern. Figure 2b visualizes the resulting DDG, obtained after
some simplifications discussed below. In this simple example the
MapReduce pattern is already clear to the experienced eye, but
its automatic identification is out of the scope of existing meth-
ods. Finally, Figure 2c shows the modernized code, here calling
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Figure 1: Overview of our parallel pattern finding analysis.

the MapReduce function from the SkePU 2 pattern library [5]. The
code transformation between the two versions would be carried out
either manually, informed by the feedback from our tool, or ideally
within a refactoring tool armed with the same pattern knowledge.

Dynamic dataflow graphs. Our DDGs are generated by execu-
tion of legacy code which has been instrumented by a new LLVM
compiler pass. In contrast to conventional DDGs, our raw graphs
(inspired by [6]) have a node for every dynamic execution of an
operation, rather than simply for each static operation, and edges
for every flow of data between these. This makes them very bulky,
and we employ a number of post-hoc simplifying heuristics to re-
duce size, including removal of sections corresponding to address
calculation and data-structure traversal, since these are artifacts
of the particular source encoding. In line with our core principle,
these guide the operations which generate the true dataflow, but
they are not part of it, and are therefore orthogonal and irrelevant
to the patterns. We can also, heuristically, condense sub-graphs
corresponding to entire loop iterations. These heuristics have been
applied to the DDG sketched in Figure 2b.

Pattern definitions. Our pattern definitions are implemented in
the MiniZinc constraint modeling language [7] (∼400 LOC), and
matched using the Chuffed constraint solver [3]. MiniZinc allows
us to express, as properties of an encoding of the DDG, both what
it means to be a pattern in general, and what further constraints
are required to capture the specifics of each distinct pattern. Our
current implementation has rules capturing a variety of flavors of
both Map and Reduce patterns, as reported in Table 1.

3 EXPERIMENTAL RESULTS
Table 1 presents our results for multithreaded code from the Star-
bench suite [1], omitting two programs, bodytrack and h264dec,
which follow a pattern (pipeline) that is out of the scope of our
current analysis. We found all but one expected patterns, known by

https://doi.org/10.1145/3410463.3414663


for (i = 0; i < nproc; i++) {
pthread_create(...); // Run pkmedian in nproc threads.
}
...
for (i = 0; i < nproc; i++) {
pthread_join(...);
}
...
float pkmedian(Points *points, ..., int pid, ...) {
...
pthread_barrier_wait(...);
double myhiz = 0;
for (kk = k1; kk < k2; kk++) {
myhiz += dist(points->p[kk], points->p[0]);
}
hizs[pid] = myhiz;
pthread_barrier_wait(...);
for (i = 0; i < nproc; i++) {
hiz += hizs[i];
}
...
}

(a) Original distance computation with nproc parallel calls to pkmedian and
manual thread management, synchronization, and workload splitting.
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(b) Partial, simplified DDG of the original parallel distance computation for
eight points and four threads.

float pkmedian(Points *points, ...) {
...
auto computeDist = MapReduce(
[] (Point p) { return dist(p, points->p[0]); },
[] (double h1, double h2) { return h1 + h2; }
);
hiz = computeDist(Vector<Point>(points->p, points->num));
...
}

(c) Modernized distance computation with a single call to pkmedian and trans-
parent parallelization.

Figure 2: Parallel distance computation in streamcluster.c.
The patterns found by our analysis are colored in light gray
(map) and dark gray (reduction).

Table 1: Found and missed parallel patterns in Starbench.

benchmark found missed

c-ray map -
md5 map -
rgbyuv map -
rotate conditional map -
kmeans reduction map
rot-cc map, conditional map -
ray-rot map, conditional map -
streamcluster map×4, conditional map×3, reduction -

manual inspection and from the literature, and understand the rea-
son for missing one map in kmeans, which will inform subsequent
versions. Our analysis ran from a few seconds to a few minutes,
depending upon the size and complexity of the DDGs. The resulting
SkePU parallelized code performed well, comparably to hand-coded
performance from benchmark implementations (e.g. 9.6x speed-up
over sequential on a Xeon E5-2680 v3 with twelve hyperthreaded
cores, 15.6x on an NVIDIA GeForce GTX Titan with 2688 cores),
and was trivially portable across a range CPU/GPU systems.
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