Register Allocation and Instruction Scheduling in Unison

Roberto Castaneda Lozano

Swedish Institute of Computer Science

School of ICT, KTH Royal Institute of
Technology, Sweden

rcas@sics.se

Abstract

This paper describes Unison, a simple, flexible, and potentially op-
timal software tool that performs register allocation and instruction
scheduling in integration using combinatorial optimization. The
tool can be used as an alternative or as a complement to traditional
approaches, which are fast but complex and suboptimal. Unison is
most suitable whenever high-quality code is required and longer
compilation times can be tolerated (such as in embedded systems
or library releases), or the targeted processors are so irregular that
traditional compilers fail to generate satisfactory code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, code generation, optimization;
D.3.2 [Programming Languages]: Language Classifications
constraint and logic languages; 1.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—backtracking,
scheduling

Keywords combinatorial optimization; register allocation; in-
struction scheduling

1. Introduction

Register allocation (assigning program variables to processor reg-
isters or memory) and instruction scheduling (reordering proces-
sor instructions to increase throughput) are central problems in op-
timizing compilers. Given the hard combinatorial nature of these
problems and their interdependencies, traditional compilers resort
to heuristic algorithms and phase decoupling, which trades code
quality and flexibility for compilation speed.

This paper describes Unison [1, 3, 4], a simple, flexible, and po-
tentially optimal software tool that performs integrated register al-
location and instruction scheduling using combinatorial optimiza-
tion. Unison formalizes both problems as combinatorial models
and solves them simultaneously, taking into account their interde-
pendencies, considering the involved trade-offs, and exploring the
full solution space to deliver optimal assembly code. Unlike earlier
combinatorial approaches, Unison captures register allocation in its

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

CC’16, March 17-18, 2016, Barcelona, Spain
© 2016 ACM. 978-1-4503-4241-4/16/03...
http://dx.doi.org/10.1145/2892208.2892237

Mats Carlsson

Swedish Institute of Computer Science
matsc@sics.se

Gabriel Hjort Blindell
Christian Schulte

School of ICT, KTH Royal Institute of
Technology, Sweden

Swedish Institute of Computer Science

{ghb,cschulte}@kth.se

e)) 4)
low-level IR register
\ 2) / allocation \ . (6)t d @)
Unison IR ‘ {negraed generic
. ’ 5 combinatorial —
construction %) solver

:\ instruction / model
3, ~ \ ®
(3) /' - =] scheduling

processor
description code

assembly

Figure 1. Unison’s approach.

full scope while robustly scaling to medium-size functions. A de-
tailed comparison with related approaches is available in a survey
by Castafieda Lozano and Schulte [2, Sect. 5].

Approach. Unison approaches register allocation and instruction
scheduling as shown in Figure 1. A low-level intermediate repre-
sentation (IR) of a function, where processor instructions are al-
ready selected, is taken as input (1). The input function is trans-
formed into Unison IR (2), which exposes the structure of the pro-
gram and the multiple decisions involved in the problem. Taking
the Unison IR of the function and a description of the processor (3),
a combinatorial model of each of the problems is formulated (4,5)
consisting of variables representing the problem decisions, program
and processor constraints over the variables, and a cost function to
be minimized. The combinatorial models are then integrated into a
single model (6) which is solved by a generic solver (7), delivering
assembly code (8) that is potentially optimal.

2. Unison IR

Unison operates on a custom IR (Unison IR), which exposes
underlying structures of the program (such as live ranges) that are
key to register allocation and instruction scheduling, and problem
decisions such as whether to spill a certain program variable (called
temporary at Unison’s level). Unison IR has the following distin-
guishing features:

linear static single assignment form (LSSA) LSSA [3] is a stricter
form of static single assignment (SSA) form in which tempo-
raries are local to basic blocks, and relations across blocks are
captured by a generalization of the ¢-congruence. This form is
key to representing liveness in the combinatorial model.

optional copies Unison IR includes optional copy instructions [3]
which can be inactivated or implemented by alternative proces-
sor instructions (such as register-to-register moves, store, and



load instructions) to support different register allocation deci-
sions.

alternative temporaries Unison IR allows instructions to use al-
ternative temporaries that hold the same value. Alternative tem-
poraries [4] improve the capabilities of register allocation by
enabling two key optimizations: spill code optimization and ul-
timate coalescing.

Unison IR can be easily constructed from a low-level, SSA-
based IR with processor instructions.

3. Combinatorial Model

The core of Unison is a combinatorial model of register allocation
and instruction scheduling. Combinatorial models are formed by
variables (typically Boolean and integer variables representing the
problem decision), constraints over the variables (representing rela-
tions among the problem decisions that must hold in any solution),
and a cost function (a function of the variables to be minimized).

Register allocation. The register allocation model includes vari-
ables to decide which register is assigned to each temporary (in-
cluding stack locations which are just modeled as any other regis-
ter bank), which temporaries are used by each instruction, which
copies are activated, and which instruction implements each of the
active copies. The use of LSSA makes it possible to model a basic
block’s register assignment as a rectangle packing problem where
each rectangle represents a live range, similarly to the approach of
Pereira and Palsberg [6]. Register assignment is extended to entire
functions by constraints that assign congruent temporaries to the
same registers. Additional constraints ensure that the temporaries
used and defined by active instructions are assigned to compatible
registers, and that the definers of used temporaries are activated.

Instruction scheduling. The instruction scheduling model in-
cludes variables to decide which issue cycle is assigned to each
instruction, and constraints to enforce precedences dictated by data
and control dependencies and to ensure that the capacity of proces-
sor resources such as functional units is not exceeded.

Integration. The register allocation and instruction scheduling
models are related by the live ranges of the temporaries. The in-
tegrated model relates each live range with the the issue cycles of
the definer and user(s) of the corresponding temporary.

The cost function of the integrated model can be adjusted for
speed or code size optimization. The speed cost function is the sum
of the estimated execution cycles of each basic block weighted by
the estimated execution frequency; the code size cost function is
simply the sum of the size of each active instruction.

4. Status

Unison has been shown to be practical and effective for medium-
size functions. Experiments with different benchmarks (SPECint
2006, MediaBench) show that Unison can generate code of simi-
lar quality to LLVM [5] (a traditional, state-of-the-art compiler) for
simple processors such as MIPS32 and better code for more com-
plex processors such as Hexagon V4, a very long instruction word
(VLIW) processor included in Qualcomm’s Snapdragon system-
on-chip [7]. The tool scales to medium-size functions of up to some
thousand instructions and can improve the generated code progres-
sively as more compilation time is invested.

LLVM interface. Although designed as a standalone tool, Unison
provides an interface to LLVM’s 11c¢ code generator, where Unison
IR is converted from and to 11c’s Machine IR (MIR) in between
11c’s PreRA and PreEmit phases. An upper bound for the cost

264

function can be obtained by running first 11c’s original register
allocator and instruction scheduler.

Currently, Unison supports Hexagon, MIPS32, and a propri-
etary processor. Support for more processors can be easily gained
since processor descriptions can be automatically extracted from
LLVM’s TableGen information.

Solvers. The Unison toolchain is solver-independent. The default
solver is based on the constraint programming system Gecode
(www.gecode.org), but alternative implementations are available
in SICStus Prolog (sicstus.sics.se) and the MiniZinc model-
ing language (www.minizinc.org), which gives access to a wide
variety of local search, integer programming, Boolean satisfiability
and constraint solvers.

Scope and subproblems. Currently, the tool supports global reg-
ister allocation with its entire range of common subproblems (reg-
ister assignment, spilling, coalescing, live range splitting, multiple
register banks, register packing for aliased registers, spill code op-
timization, and rematerialization) and local instruction scheduling
for single and multiple-issue processors. Additionally, the tool in-
tegrates practical aspects related to register allocation and instruc-
tion scheduling such as calling conventions (including scheduling
of related spill code) and stack handling. Furthermore, the model is
flexible enough to integrate optimizations specific to certain proces-
sors such as memory operands, two-address conversion, and regis-
ter bank assignment.

Future work. Future work on the combinatorial model includes
extending the scope of instruction scheduling (starting from su-
perblocks as the immediately next step), and improving the accu-
racy of the speed cost function in the face of unpredictable proces-
sor features like cache memories. Another potential line of work is
to improve the compilation time and scalability of Unison by inte-
grating different solving techniques. Longer-term goals include full
integration with instruction selection (which often has dependen-
cies with instruction scheduling and register allocation) and adding
support for multi-objective optimization as well as other optimiza-
tion goals such as energy consumption.

Acknowledgments

This research has been partially funded by LM Ericsson AB and the
Swedish Research Council (VR 621-2011-6229). Mikael Almgren,
Erik Ekstrom, Bevin Hansson, Jan Tomljanovi¢, and Kim-Anh
Tran have collaborated in the development of Unison. The authors
are grateful for helpful comments from the anonymous reviewers.

References

[1] R. Castaneda Lozano. Integrated Register Allocation and Instruc-
tion Scheduling with Constraint Programming. Licentiate thesis. KTH
Royal Institute of Technology, Sweden, 2014.

[2] R. Castaneda Lozano and C. Schulte. Survey on combinatorial reg-
ister allocation and instruction scheduling. Technical report, SCALE,
KTH Royal Institute of Technology & Swedish Institute of Computer
Science, 2014. Archived at arXiv:1409.7628 [cs.PL].

[3] R. Castafieda Lozano, M. Carlsson, F. Drejhammar, and C. Schulte.
Constraint-based register allocation and instruction scheduling. In CP,
volume 7514 of LNCS, pages 750-766. Springer, 2012.

[4] R. Castafieda Lozano, M. Carlsson, G. Hjort Blindell, and C. Schulte.
Combinatorial spill code optimization and ultimate coalescing. In
LCTES, pages 23-32. ACM, 2014.

[5] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75-88. IEEE, 2004.

[6] F. M. Q. Pereira and J. Palsberg. Register allocation by puzzle solving.
pages 216-226. ACM, 2008.

[7]1 Hexagon V4 Programmer’s Reference Manual. Qualcomm, Aug. 2013.


www.gecode.org
sicstus.sics.se
www.minizinc.org

	Introduction
	Unison IR
	Combinatorial Model
	Status

