
A Hybrid Approach to
Parallel Pattern Discovery in C++

C. Brown, V. Janjic, A. Barwell, J. Thomson
School of Computer Science

University of St Andrews
St Andrews, UK

{cmb21, vj32, adb23, j.thomson}@st-andrews.ac.uk

J.D. Garcia-Sanchez, D. Del Rio Astorga
Computer Science and Engineering Dept.

Universidad Carlos III de Madrid
Madrid, Spain

{josedaniel.garcia, david.rio}@uc3m.es

R. Castañeda Lozano, M. Cole, B. Franke
School of Informatics

University of Edinburgh
Edinburgh, UK

{rcastae, mic, bfranke}@inf.ed.ac.uk

K. MacKenzie
IOHK

kenneth.mackenzie@iohk.io

Abstract—Parallel pattern libraries offer a strong combination
of abstraction and performance. However, discovering places in
sequential code where parallel patterns should be introduced is
still highly non-trivial, often requiring expert manual analysis
and profiling. We present a hybrid discovery technique to detect
instances of parallel patterns in sequential code. This employs
both static and dynamic trace-based analysis, together with
hotspot detection. We evaluate our pattern discovery mechanism
on a number of representative benchmarks. We evaluate the
performance of the resulting parallelised benchmarks on a 24-
core parallel machine.

I. INTRODUCTION AND BACKGROUND

With the massive increase of scale of parallelism and hetero-
geneity of modern parallel hardware, programming parallel
systems has now become harder than ever. Models based on
parallel patterns have gained lots of traction recently [1, 2, 4],
with significant industry players releasing their own pattern
libraries. Pattern libraries offer functions for common parallel
structures such as pipeline, map and reduce, which can be
instantiated into appropriate places in otherwise sequential
application code. However, exactly where in the code to
introduce patterns and what pattern to introduce is challenging.
In this paper we present a novel hybrid composition of both
static and dynamic analyses of sequential applications to
detect places where parallel patterns should be introduced. Our
study involves three complementary components: profiling-
based hotspot detection, static pattern detection on hotspot
loops, and trace-based pattern detection on hotspot loops.
In this way, we are able to answer both the where should
parallelism be introduced and what type of parallelism should
be introduced questions for an existing sequential application.
We evaluate our approach and demonstrate that we are able to
identify, among numerous loops in the benchmarks, those that
are both computationally intensive and conform to one of the
standard parallel patterns. In this paper, we restrict ourselves

to two classical parallel patterns, which we believe to be the
most widely known:

• The map pattern models a data parallel computation,
where a single computational worker f is applied to a set
of independent inputs x1, ..., xn. Parallelism arises from
applying the worker f to input elements in parallel.

• The reduce pattern models a reduction operation, where
a binary associative function ⊕ is applied pairwise to the
elements of a set of inputs, x1, ..., xn. The output of the
reduce becomes, x1⊕x2⊕x3 · · ·⊕xn. Parallelism arises
by staging the reductions in parallel.

II. DETECTING PARALLELISM CANDIDATES IN C++
Our parallelism discovery methodology is shown in Fig-

ure 1. Here, the programmer starts with a program written
in C++. The hotspot analysis over the sequential code du-
plicates the original sequential program, instruments it with
profiling code, executes the instrumented version, and records
the results for use by the tracing stage. For each hotspot
loop candidate, we apply two contrasting pattern-detection
mechanisms to determine whether the loop is an instance of
a parallel pattern. In static pattern-detection, each parallelism
candidate hotspot is passed through a static analysis, leverag-
ing the existing Pattern Analyzer Tool PPAT [3]. PPAT takes
advantage of the clang lib-tooling utilities to statically analyze
the code at the Abstract Syntax Tree level. It traverses the AST
and collects information about the data dependencies, analyses
them and introduces annotation indicating the potential parallel
patterns in the form of C++ attributes.

Independently from the static analysis, candidate hotspots
are also passed through our new dynamic trace-based pattern
detection mechanism (described in Section III). Finally, the
user checks manually that the candidate detected patterns
(from either analysis) are indeed applicable. A detected pattern
might not be applicable for different reasons, for example if

sequential
program

hotspot
detection

hotspot
loops

static
pattern detection

dynamic
pattern detection

(Section III)

validation and
refactoring

parallel
patterns

parallel
program

Fig. 1: Overview of our approach to parallel pattern discovery.

the input used for tracing does not uncover all dependencies
across loop iterations.

As the fork in the diagram suggests (see Figure 1), in our
current prototype we apply both static and dynamic approaches
to all candidate loops. This recognizes that each technique
could find instances of potential patterns undetected by the
other. It also allows us to compare the performance of the two
techniques directly. In a production system, we could decide
to only apply the more computationally expensive dynamic
method to candidates for which the static approach has not
found an acceptable pattern.

III. DYNAMIC TRACE-BASED DETECTION OF PATTERNS
IN HOT SPOTS

Our new dynamic trace-and-match method detects whether
a hotspot loop corresponds to a parallel pattern. The method
proceeds in two steps: first, it constructs a graph representation
of the execution of the loop (Section III-A) by instrumenting
and tracing the loop’s data flow. Then it applies pattern
matching techniques to check whether the loop iterations
correspond to a parallel pattern (Section III-B).

This paper explores the matching of map and reduce
patterns. Generalizing the method to match more complex
patterns such as pipeline and stencil is part of ongoing work.

A. Dynamic Dependency Graphs

The pattern detection method represents input loops as
Dynamic Dependency Graphs (DDG). A DDG is a directed
acyclic graph in which nodes correspond to executions of
instructions (or groups of instructions), and arcs correspond to
flow of data across them. The DDG is a natural representation
of the essential computation of a program, as it abstracts away
implementation aspects such as the choice of data structures
or order of computation [9].

Our method constructs the DDG of a loop by instrumenting
the loop at the compiler intermediate representation (IR) level
and tracing its data flow as the loop is executed.

The size of DDGs grows quickly with the number of exe-
cuted instructions and can make pattern matching prohibitive.
To reduce this size, sets of nodes corresponding to loop
body instructions from the same iteration are merged into
single nodes. This simplification leads to DDGs containing
two types of nodes: loop body nodes and single instruction
nodes corresponding to iterator instructions such as induction
variable increments.

b1 b2 b3 b4

+
+

+

Fig. 2: DDG of a map style for loop iterated four times. Each
bi node corresponds to all loop body instructions in iteration i.

b1 b2 · · · bn

(a) Map pattern shape.

b1
b2 · · ·

bn

(b) Reduce pattern shape.

Fig. 3: Pattern shapes on DDGs.

Figure 2 shows an example DDG corresponding to an
execution of four iterations of a typical map style for loop,
where an induction variable is incremented in each iteration.
The DDG includes addition nodes (+) that correspond to the
increment of the induction variable and loop body nodes (bi)
that correspond to instructions executed in iteration i.

B. Matching of Parallel Patterns

The pattern detection method checks, for the simplified loop
DDG, whether the loop body nodes match the shape of a map
or reduce pattern. This check is formulated and performed as
a graph pattern matching problem, where pattern matches are
found by testing the satisfiability of pattern-specific constraints
over the set of loop body nodes.

Figure 3 depicts the shape of map and reduce patterns
on DDGs containing a set of loop body nodes B =
{b1, b2, . . . , bn}. Such a set matches a map pattern if and only
if its nodes are disconnected:

bj is not reachable from bi ∀bi, bj ∈ B : bi 6= bj . (1)

For example, the body nodes {b1, b2, b3, b4} in Figure 2 match
a map pattern, as none of them reach each other in the DDG.

A set of loop body nodes B matches a reduce pattern if and
only if its nodes form a path where the outdegree of all but

the last node is equal to one:

successors(bi) = {bi+1} ∀i : 1 ≤ i < n. (2)

These pattern definitions are solely based on data-flow
structure, and do not take into account other criteria such as
specific relations among different input data elements. This
high-level, structural view simplifies and broadens the scope
of pattern detection, for example allowing the detection of
potential patterns across scattered data elements or different
data collections. However, it also implies that our method
can potentially propose invalid pattern matches that do not
satisfy additional criteria besides matching the pattern’s data-
flow structure. Examples are pattern matches containing non-
commutative system calls and reduce matches where the loop
body is not an associative reduction operator. Reducing the
number of invalid pattern matches is part of future work.

IV. RESULTS

A. Parallel Pattern Detection Performance

This section studies the pattern detection capabilities of the
static PPAT tool and the dynamic trace-and-match method
described in Section III and identifies strengths, limitations,
and opportunities based on the results.

Table I compares the map and reduce patterns detected
by both approaches with those detected by a manual expert
analysis for each of the loops selected by hotspot analysis.
For the dynamic approach, we have traced each benchmark
using small input data sets, to reduce the size of the resulting
dependency graphs while executing a sufficient number of
iterations of each of the targeted loops.

Table II summarizes the performance of each pattern de-
tection method using the expert analysis results as the ground
truth. The performance of each method is summarized by three
measures: accuracy (percentage of loops classified correctly,
whether containing patterns or not), precision (percentage
of actual patterns among all detected patterns), and recall
(percentage of detected patterns among all actual patterns).

The results show that, across the selected benchmarks, both
pattern detection methods have a substantial overall accuracy
(79%). As can be expected from their fundamental properties,
the methods present complementary strengths: while the static
pattern detector is sound (100% precision), the dynamic pat-
tern detector trades some precision (−18%) for higher overall
recall (+15%).

The precision results confirm the soundness of the static
pattern detector, and show that the dynamic pattern detector
has a lower yet substantial overall precision (82%), only
affected by four loops where patterns are falsely detected.
Loop 134 (Ant Colony) is a max reduction implemented
with a conditional assignment. The dynamic detector abstracts
away assignments that move but do not transform data, and
falsely detects the resulting instructions as a map pattern.
Loop 373 (Black-Scholes) contains non-commutative system
calls (fscanf) which preclude parallelization in practice.

benchmark loop exec. map pattern reduce pattern
ID static dynam. expert static dynam. expert

Ant Colony

258 99% # # # # #
259 84% # # # #
120 84% # # # # # #
123 51% # # #
211 15% # # #
90 14% # # #
212 12% # # #
134 8% # # # #

Black-Scholes
285 40% # # # #
290 24% # # #
373 3% # # # # #

Convolution

158 100% # # #
112 99% # # #
111 99% # # #
119 94% # #
120 45% # #

Mandelbrot
60 96% # # #
62 96% # # #
33 90% # # # # # #

Transfil

54 99% # # # # #
233 90% # # # #
78 60% # # # # #
94 60% # # # # # #
157 59% # # # # # #
183 45% # # # #
90 45% # # # #
120 39% # # # # #
217 5% # #
464 2% # # #

TABLE I: Patterns detected by the static and dynamic ap-
proaches and by expert analysis in the loops selected by
hotspot analysis. The loops within each benchmark are sorted
in descending order of execution time (exec.). Filled circles
() indicate that the corresponding pattern is detected, empty
circles (#) indicate the opposite.

pattern accuracy precision recall
static dynamic static dynamic static dynamic

map 62% 72% 100% 88% 48% 71%
reduce 97% 86% 100% 60% 80% 60%

total 79% 79% 100% 82% 54% 69%

TABLE II: Pattern detection performance.

Loops 258 (Ant Colony) and 120 (Transfil) are structured as
reduce patterns but their body is not associative.

The static pattern detector misses a total of twelve map
and reduce patterns, due to its conservativeness in the face
of potential side-effects, pointer aliasing, and unknown in-
formation at compile time. The dynamic pattern detector
misses eight actual patterns. In Loops 123 (Ant Colony),
119 and 120 (Convolution), and 217 (Transfil), the Dynamic
Dependency Graph simplification described in Section III-A
precludes detecting partial patterns that only cover some of
the instructions in the loop body. In Loop 134 (Ant Colony),
the dynamic approach misses the reduce pattern due to the
assignment instruction limitation described above. Finally, in
Loops 54 and 78 (Transfil), the dynamic approach fails to

find map patterns due to loop-carried dependencies induced
by output buffering, pseudo-random number generation, and
intermediate result caching. While these dependencies could
be in principle removed by a manual expert, the transforma-
tions required are beyond the scope of our detection methods.

Stencil pattern case study. Regarding the Convolution
benchmark using the static pattern analyzer, in addition to the
map patterns detected by the dynamic and static approaches,
it also detects an instance of a stencil pattern in Loop 112.
Listing 1 shows an excerpt of the loop annotated by the tool.
As observed, the static analyzer detected the loop as a stencil
pattern since each output item can be transformed indepen-
dently and depend on multiple input data items. Furthermore,
the tool also annotated the input/output parameters of the
pattern in order to ease the code transformation by a developer.

Listing 1: Annotated stencil pattern in Convolution benchmark
1 [[rph::stencil, rph::in(vstep,dim,hstep,mask_index

,mask_dim,index,in_image,mask), rph::out(
out_image)]]

2 for(int x = 0; x < dim; x++)
3 [rph::map, rph::in(x,dim,hstep,mask_index,

mask_dim,index,in_image,mask), rph::out(
out_image)]]

4 for(int y = 0; y < dim; y++) {
5 left = (x < vstep) ? 0 : (x - vstep);
6 right = ((x + vstep - 1) >= dim) ? dim - 1 : (x

+ vstep - 1);
7 top = (y < hstep) ? 0 : (y - hstep);
8 bottom = ((y + hstep - 1) >= dim)? dim - 1 : (y

+ hstep - 1);
9 sumFX = 0;

10
11 [[rph::reduce, rph::reduce(sumFX)]]
12 for(int j = left; j <= right; j++)
13 [[rph::reduce, rph::reduce(sumFX)]]
14 for(int k = top ; k <= bottom; k++) {
15 mask_index = (k - (y - hstep)) * mask_dim + (j

- (x - vstep));
16 index = k * dim + j;
17 sumFX += ((float)in_image[index] * mask[

mask_index]);
18 }
19
20 sumFX += 0.5f;
21
22 out_image[y*dim + x] = (unsigned short) sumFX;
23 }

B. Parallel Pattern Runtime Performance

For each benchmark, we have taken the loop reported as
having the highest execution time by the hotspot analysis and
also reported as a map pattern by at least one of the pattern
detectors. Our goal is to verify whether the execution time of
the identified loops translates into highly effective speedups.

All of our execution experiments are conducted on a server
with Intel Xeon E5-2690 CPU with 28 cores, running at 2.6
GHz with 256 GB of RAM, with Scientific Linux 6.2.

The performance results for the Mandelbrot, Convolution,
Ant Colony, and Black-Scholes benchmarks are shown in
Figure 4. These benchmarks show significant speedups, with

2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

4

8

12

16

20

24

Number of Workers (threads)

Sp
ee

du
p

Mandelbrot
Convolution
Ant Colony
Black-Scholes

Fig. 4: Speedup results for Mandelbrot, Convolution, Ant
Colony, and Black-Scholes where the hottest map pattern is
parallelized.

2 4 6 8 10 12 14 16 18 20 22 24 26 28

1

2

3

4

5

Number of Workers (threads)

Sp
ee

du
p

Transfil (original)
Transfil (modified)

Fig. 5: Speedup results for Transfil (original and modified)
where the hottest map pattern (Loop 233) is parallelized.

Mandelbrot (Loop 60), Ant Colony (Loop 259) and Black-
Scholes (Loop 285) all reaching speedups of around 22 on 28
cores. Convolution starts to plateau at around 18 cores, with
a speedup of 16, but steadily increases up to a speedup of
around 21 on 28 cores.

The performance results for the Transfil benchmark (where
Loop 233 is parallelized) are shown in Figure 5 (Transfil
original). As can be seen, Transfil differs radically from the
other benchmarks in that it does not show any speedup, even
though Loop 233 takes 90% of its total execution time. The
key bottleneck in this loop is the intensive use of a single
random number generator that imposes a serialization among
the different threads accessing it. Detecting such performance
bottlenecks is currently outside the scope of our discovery
technique.

The effect of using a single random number generator can
be noticed by comparing the speedup of the original Transfil
benchmark (Transfil original in Figure 5) with the speedup
of a modified version (Transfil modified in the same figure)
where the most frequent random generation calls are replaced
by numeric constants. In the latter case, reasonable speedup

is obtained, suggesting that each thread should use its own
random number generator to obtain an effective parallelization.

V. RELATED WORK

There is a significant amount of previous work on de-
tecting parallelism by tracing data dependencies dynamically
[5, 6, 7, 8, 10, 11]. Among these approaches, those by Rul
et al. [10] and Huda et al. [6] are most closely related to our
trace-and-match method from Section III. Both approaches
aim at detecting map and pipeline patterns (the latter also
targets reduce patterns) on different program representations
based on profiled data- and control-flow information. Both
Rul et al. [10] and Huda et al. [6] use graphs as the main
abstraction in their representations, but, unlike our approach,
they aggregate data and control-flow information about dif-
ferent executions of the same program region into single
nodes. While this yields a more compact representation, we
believe that conserving specific information about different
executions of a program region is needed to detect patterns
that act differently depending on input data and other dynamic
properties, which we aim to explore in future work. Rul et al.
[10] track dependencies at the data structure level, while Huda
et al. [6] use read-compute-write units. In contrast, our method
admits varying levels of granularity based on static program
structure. We plan to explore adapting the granularity during
pattern detection to balance the trade-off between scalability
and detection performance. As discussed in Section IV-A,
a finer granularity would increase significantly the scope of
detectable patterns.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new hybrid-approach for par-
allel pattern discovery in C++. This novel discovery approach
employs three kinds of analysis to find instances of parallel
patterns, including dynamic hotspot detection that profiles
the execution with monotonic runtime timing, static analysis
using the PPAT tool, and dynamic trace-based methods, which
analyse the execution data flow to determine instances of
patterns. Driven by candidates suggested by hotspot analysis,
both pattern-detection techniques reported instances of parallel
patterns in each of the benchmarks reported. We confirmed
that instances in the source code could indeed be transformed
into instances of parallel patterns with significant speedups
of up to 22 on a 28-core machine. In the future, we plan to
extend our hybrid pattern discovery technique further, in order
to support additional patterns, such as divide and conquer and
to other languages as well. We also plan to evaluate our hybrid
discovery technique on larger use-cases. Finally, we intend to
refine the technique to take into account different types of
scalability bottlenecks.

ACKNOWLEDGEMENTS

This work was supported by the EU Horizon 2020 project,
TeamPlay, grant number 779882, and UK EPSRC Discovery,
grant number EP/P020631/1.

REFERENCES

[1] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and
Massimo Torquati. Fastflow: High-Level and Efficient
Streaming on Multicore, chapter 13, pages 261–280. John
Wiley & Sons, Ltd, 2017.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified data processing on large clusters. In Proceedings
of the 6th Conference on Symposium on Operating Sys-
tems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX Asso-
ciation.

[3] David del Rio Astorga, Manuel F Dolz, Luis Miguel
Snchez, J Daniel Garca, Marco Danelutto, and Massimo
Torquati. Finding parallel patterns through static anal-
ysis in C++ applications. The International Journal of
High Performance Computing Applications, 32(6):779–
788, 2018.

[4] Johan Enmyren and Christoph W. Kessler. SkePU: A
multi-backend skeleton programming library for multi-
GPU systems. In Proceedings of the Fourth International
Workshop on High-level Parallel Programming and Ap-
plications, HLPP ’10, pages 5–14, New York, NY, USA,
2010. ACM.

[5] Fabian Gruber, Manuel Selva, Diogo Sampaio,
Christophe Guillon, Antoine Moynault, Louis-Noël
Pouchet, and Fabrice Rastello. Data-flow/dependence
profiling for structured transformations. In Principles
and Practice of Parallel Programming, pages 173–185,
New York, NY, USA, 2019. ACM.

[6] Zia Ul Huda, Rohit Atre, Ali Jannesari, and Felix Wolf.
Automatic parallel pattern detection in the algorithm
structure design space. In International Parallel and
Distributed Processing Symposium, pages 43–52, Wash-
ington, DC, USA, May 2016. IEEE.

[7] Alain Ketterlin and Philippe Clauss. Profiling data-
dependence to assist parallelization: Framework, scope,
and optimization. In IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-45, pages 437–448,
Washington, DC, USA, 2012. IEEE.

[8] Zhen Li, Ali Jannesari, and Felix Wolf. Discovery of
potential parallelism in sequential programs. In Parallel
Processing, pages 1004–1013, Washington, DC, USA,
2013. IEEE.

[9] Nicholas Nethercote and Alan Mycroft. Redux: A
dynamic dataflow tracer. Electronic Notes in Theoretical
Computer Science, 89(2), 2003.

[10] Sean Rul, Hans Vandierendonck, and Koen De Boss-
chere. A profile-based tool for finding pipeline paral-
lelism in sequential programs. Parallel Computing, 36
(9):531–551, September 2010.

[11] Georgios Tournavitis and Björn Franke. Semi-automatic
extraction and exploitation of hierarchical pipeline par-
allelism using profiling information. In Parallel Archi-
tectures and Compilation Techniques, PACT ’10, pages
377–388, New York, NY, USA, 2010. ACM.

	Introduction and Background
	Detecting Parallelism Candidates in C++
	Dynamic Trace-Based Detection of Patterns in Hot Spots
	Dynamic Dependency Graphs
	Matching of Parallel Patterns

	Results
	Parallel Pattern Detection Performance
	Parallel Pattern Runtime Performance

	Related Work
	Conclusions and Future Work

