Constraint-Based Register Allocation and
Instruction Scheduling

Candidate: Roberto Castafieda Lozano
Opponent: Prof. Laurent Michel
Main Supervisor: Prof. Christian Schulte

Doctoral defense, September 3, 2018

This research has been partially funded by Ericsson AB and the Swedish Research Council (VR 621-2011-6229)

Thesis

The integration of register allocation and instruction scheduling
using constraint programming is practical and effective.

m practical: complete, fairly scalable, executable
m effective: better code than heuristic approaches

m Enables compiler back-ends that can:

v/ trade compilation time for speed or code size
v adapt to new processor features and criteria

2/43

Earlier Approaches

m Incomplete model

m mostly local (single basic blocks)
m limited coverage of standard subproblems

m Do not scale beyond small problems (up to ~ 100 ins)

m No executable code

m Ours:
m complete model
m fair scalability (up to 647 ins)
m executable code

m key: constraint programming

3/43

Constraint Programming

m Modeling m Solving

m variables .
m constraints —
m objective function

m propagation
m search

m Key feature: global constraints

4/43

Our Approach

register

. / allocation \ integrated -
input . . constraint assembly
combinatorial — —
solver code

i ; roblem
. instruction / p

processor features scheduling

+
optimization criteria

code

/

m processor instructions m processor instructions

m temps (program variables) m registers
m unscheduled m scheduled
t; < mul tq,2
t3< subty,1 0: RO« mulRO,2 || Rl < subRO,1
ty< add ty, t3 1: RO < add RO,R1
ret ty 2: ret RO

5/43

Contributions

C1 Survey of combinatorial approaches

Survey on Combinatorial Register Allocation and
Instruction Scheduling. To appear in ACM CSUR, 2018

6/43

Contributions

C2-3 Model and program representation
C4 Model extensions
C5 Solving method for scalability
C6 Experimental evaluation
C7 Study of model accuracy

Constraint-based Register Cor'nb.ina.tor ial Spill (;Ode
Allocation and Instruction Optimization and Ultimate
Scheduling. In CP, 2012 Coalescing. In LCTES, 2014

Combinatorial Register
Allocation and Instruction

Scheduling. Tech. report, 2018

(submitted for publication)

7/43

Contributions

C8 Unison: a mature, open-source tool

— U ;:&n
e
"o/
Register Allocation and Instruction Scheduling in unison-code.github.io

Unison. In CC, 2016

8/43

Outline

Model

=

Solver

™|

Results

@

L~

Future Work

|

Conclusion

9/43

Model
m Register Assignment

Solver
Results
Future Work

Conclusion

10/43

Register Assignment

m Map temporaries to individual registers

ty) < mul tq1,2 R2<+< mul R1,2

t3<« subtq,1 Rl1< subR1,1

ty < add ty, t3 t > R1 R1+«+ add R2,R1
ret ty t, > R2 ret R1

t3'—>R.1
t4'—>R.1

m Problem: limited number of registers
m Reuse registers as much as possible
m When can two temps reuse a register?

11/43

Register Assignment: Liveness

m Live range of a temp t: points at which t might be needed

m between definition and last use

[7)
ty < mul -

oo «— sub -
... «— add tZ’ “ee

ret ---

12/43

Register Assignment: Register Reuse

® When can two temps reuse a register?

m if their live ranges do not interfere

t1 tp t3 1y
t) < mul tq, 2 I

t3 < subty, 1 I
ty < add tp, t3 I

ret ty

m t; and t; can use the same register

m t, and t3 cannot

13/43

Register Assignment: Model

to which register is each temp assigned?

Register Assignment Rectangle Packing
temp live ranges rectangles

interfering temps cannot share registers rectangles cannot overlap

t1 tp t3 ty R1 R2 R3 -
t1 0
I ty P
I t3 1|3
™
I ty 2

m Based on abstraction by Pereira and Palsberg (PLDI 2008)

14/43

B 0 8 38

Model

m Spilling, Splitting, and Coalescing

Solver

Results

Future Work

Conclusion

15/43

Spilling

m Allocate temporaries to memory
m applied when no more registers are available

ty < mul -- ty < mul ---
store ty
—_— :
spill t, t3< load
o< add ty, - -+< add t3, -

16/43

Live Range Splitting

m Split a temporary live range into shorter ones
m can improve register reuse

ty < mul -- ty < mul ---

—> ({3« movet
split t,

...« add t27... ... < add t3’...

17/43

Coalescing

m Merge split temporaries
m to reduce overhead of move instructions

t) < mul --- t) < mul -

t3 < move tp —_—
: coalesce ty, t3

...« add t37... ...« add tz,...

18/43

Spilling, Splitting, and Coalescing: Model
m Common mechanism: insert or remove copies
m Spilling: insert reg-to-mem and mem-to-reg copies
m Splitting: insert reg-to-reg copies
m Coalescing: remove reg-to-reg copies

Model memory locations as registers (columns)

Extend input program with optional copies:
t, < {store,move, L } t;
which instruction implements each copy?
R1 R2 R3 R4 ~ M1 M2 M3 -~

0 t1 |—]
g 1| movel | [store
= [/ N

Hhl—Jt] —)

19/43

Other Register Allocation Subproblems

Register packing
m Load-store optimization
m Rematerialization

m Multi-allocation

20/43

Model

m Instruction Scheduling

Solver
Results
Future Work

Conclusion

21/43

Instruction Scheduling: Model

m Map instructions to time points (issue cycles)
m Classic constraint-based scheduling model:

in which cycle is each instruction issued?

m Subject to:

m precedences
m resource constraints

m Connection to register allocation: live ranges

issue cycle of definer

cycle

issue cycle of last user

22/43

Model

m Global Scope

Solver
Results
Future Work

Conclusion

23/43

Global Scope

m Extend the rectangle packing model to entire functions
m Temps live in multiple basic blocks?

m Decompose them into local temps
m Define decomposed temps as congruent (=)

24/43

Global Scope: Model

m Only relation between basic blocks: congruences
m Congruent temps are assigned to the same register

R1 R2 -
ty t1=1t3
t t)=t4 R1 R2 -
t3 |ty
te=1s
thi=t7 P ts=t3
5|t
R1 R2 -
t7
t7=tg
tg

25/43

Model

m Putting It All Together
Solver
Results
Future Work

Conclusion

26/43

Model

minimize Z weight(b) x cost(b) subject to
beB

no-overlap ({(reg(t), reg(t) + width(t), start(t), end(t)):t € T, A live(t)}) VbeB
regltemp(p)l =r VpeP:pDr
reg[temp(p)] € class[p, ins(operation(p))] VpeP: active(operation(p))
active(o) VoeO: -copy(o)

live(t) <= active(operation(definer(t))) <=
Jpeusers(t) : active(operation(p)) Atemp(p) =t VteT

reg[temp(p)] = reg[temp(q)] Vp,qeP:p=q

issue(operation(q)) > issue(operation(p)) + lat[ins(operation(p))] Vte T,Vp € {definer(t)},Vq € users(t) :
active(operation(q)) A temp(q) = t

cumulative ({(issue(o), dur[ins(0), s], con[ins(0), s]) :0 € O, A active(o)}.cap(s)) VbeB,VseS
start(t) = issue(operation(definer(t))) VteT: live(t)

end(t) = maxmsue(operanon(p)) VteT: live(t)

Ppeusers(t) :temp(p) =

m Generic objective function: speed, code size, ...
m Compact: size independent of registers and cycles
m Global constraints:

m rectangle packing, scheduling with resources

27/43

Solver

28/43

Solver: Decomposition

m Split the problem into simpler subproblems

m Solve each subproblem, recombine, and iterate

m Improves scalability

issue cycles?
copy instructions?
register of t1,t?

t1=ty

issue cycles?
. . t6 = t4
copy instructions?

ts=t
register of t3, ts, ts, tg? 27

issue cycles?
copy instructions?
register of t;?

e

t7=tg

(master problem)

29/43

Solver: Decomposition

m Split the problem into simpler subproblems
m Solve each subproblem, recombine, and iterate

m Improves scalability

issue cycles?
copy instructions?

issue cycles?
(subproblem) copy instructions?
issue cycles? (subproblem)

copy instructions?

(subproblem)

29/43

Solver: Other Improvements

“Many a little makes a mickle.” (English proverb)

30/43

Results

31/43

Experimental Setup

m How practical is our approach?
m evaluation of scalability
m How effective?
m evaluation of code quality (speed and code size)

m 100 functions from MediaBench and SPEC CPU2006
m medium size: up to 1000 instructions

m Baseline: LLVM 3.8 (state-of-the-art compiler)
m for comparison
m as a quality lower bound

m Processors:
m Hexagon V4: multiple-issue, signal processing
m ARMVv6: single-issue, general-purpose
m MIPS32: single-issue, embedded

m Solver time limit: 15 minutes per function

32/43

Model

Solver

Results
m Scalability

Future Work

Conclusion

33/43

Solving Time to Optimality by Function Size

1OOOSE T -
£ . . -..' . .o og..':.: *330 0647
: B A B AL
o o° o .
100s S s Cpec® \: ® et Hexagon
F Se i S °
. ':n ,p'b% e ®
[oo Loz‘.. .
105 | BERAG AR 3
. :{. ~:= o @ “ .
& :- : Y O] ° °
S ™ .?'. ARM
1si ¢ ‘-. .:. o ° E
: .os.s ¢ ° z.
o o
¢ ;5 ! oo © ‘
0.1s — et —
10 100 1000

number of instructions

m Scales up to medium-size functions
m optimally up to 647 ins, improves up to 874 ins
m Scalability depends on processor

34/43

Model
Solver

Results

m Code Quality
Future Work

Conclusion

35/43

Estimated Speedup over LLVM: ARM

100%
90%
80%
70%
60%
50%
40%
30%
20%

18;2 u PR . . | T ' . . Ill 1. I

function id

m Slight speedup: 1% mean

m Better spilling and coalescing

36/43

Estimated Speedup over LLVM: MIPS

100%
90%

80%
70%
60%
50%
40%
30%
20%
10%

Q
x EEEDEE
e e

functlon id

m Moderate speedup: 5.1% mean

m Better spill code placement

36/43

Estimated Speedup over LLVM: Hexagon

100%
90% - -
80% - i
70% =
0% |- B
50% | B
0% |- | ‘ 4
2| | | ||]
20% |- y
A TR I e B TTIFT IR R 1
10 20 3 100
functlon id

m Significant speedup: 9.3% mean

m Better exploitation of multiple-issue capabilities
m more instructions per cycle

m Better spill code placement

36/43

Actual Application Speedup over LLVM

m Processor: Hexagon (highest estimated speedup)
m Benchmarks: MediaBench apps (top 5 functions)
m Execution: Qualcomm’s Hexagon Simulator (high accuracy)

16%
14%
12%
10%
8%
6%
4%
2%
0%
-2%

e, 50 S, . P P P, e, 0, %
m Moderate speedup: 5.4% mean, accuracy?

37/43

Speedup Accuracy: Estimated vs. Actual Speedup

90%

80%
70%
60%
50%
40%
30%
20% 1
10%
0% 1

-10%

-20%

-30% !

actual function speedup

0%

10%

20% 30% 40% 50% 60% 70% 80%
estimated function speedup

m Strong monotonic relationship (Spearman correlation p = 0.77)
m Inaccuracies
m mostly due to dynamic processor behavior

(Wilcoxon signed-rank test)

38/43

Code Size Minimization

m Slight to moderate code size reduction over LLVM
(0.8%-3.9% mean depending on the processor)

m Aggressive coalescing
m scheduling and spilling subordinated

m Exploitation of processor-specific features
m example: ARM’s 16-bits Thumb-2 instructions

39/43

Future Work

40/43

Future Work

m Extend instruction scheduling

m Increase model accuracy

Improve scalability

Integrate with instruction selection

41/43

Conclusion

42/43

Conclusion

The integration of register allocation and instruction scheduling
using constraint programming is practical and effective.

m practical: complete, fairly scalable, executable
m finally catching up with heuristic approaches
m used in industry today

m effective: better code than heuristic approaches

m works today: actual speedup and code size reduction
m works tomorrow:

m exploits ever-evolving processor features
m adapts to different optimization criteria

unison-code.github.1io

43/43

	Model
	Register Assignment
	Spilling, Splitting, and Coalescing
	Instruction Scheduling
	Global Scope
	Putting It All Together

	Solver
	Results
	Scalability
	Code Quality

	Future Work
	Conclusion

