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Thesis

The integraƟon of register allocaƟon and instrucƟon scheduling
using constraint programming is pracƟcal and effecƟve.

pracƟcal: complete, fairly scalable, executable

effecƟve: beƩer code than heurisƟc approaches

Enables compiler back-ends that can:

! trade compilaƟon Ɵme for speed or code size

! adapt to new processor features and criteria
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Earlier Approaches

Incomplete model

mostly local (single basic blocks)

limited coverage of standard subproblems

Do not scale beyond small problems (up to ∼ 100 ins)
No executable code

Ours:
complete model

fair scalability (up to 647 ins)

executable code

key: constraint programming
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Constraint Programming

Modeling
variables
constraints
objecƟve funcƟon

Solving
propagaƟon
search

Key feature: global constraints
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Our Approach

input
code

processor instrucƟons
temps (program variables)
unscheduled

t2← mul t1,2
t3← sub t1,1
t4← add t2, t3

ret t4

+
processor features

+
opƟmizaƟon criteria

register
allocaƟon

instrucƟon
scheduling

integrated
combinatorial

problem

constraint
solver

assembly
code

processor instrucƟons
registers
scheduled

0 ∶ R0← mul R0,2 ∣∣ R1← sub R0,1
1 ∶ R0← add R0,R1
2 ∶ ret R0
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Register allocation (mapping variables to processor registers ormemory) and instruction scheduling (reordering
instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code
in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional,
heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions
according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at
the expense of increased compilation time.

This paper provides an exhaustive literature review and a classification of combinatorial optimization ap-
proaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied
in this context: integer programming, constraint programming, partitioned Boolean quadratic programming,
and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying
developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp
the potential benefit of applying combinatorial optimization.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering
→ Retargetable compilers; Assembly languages; • Theory of computation → Constraint and logic
programming; Mathematical optimization; Algorithm design techniques;

Additional Key Words and Phrases: Combinatorial optimization, register allocation, instruction scheduling
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1 INTRODUCTION
Compiler back-ends take an intermediate representation (IR) of a program and generate assembly
code for a particular processor. The main tasks in a back-end are instruction selection, register
allocation, and instruction scheduling. Instruction selection implements abstract operations with
processor instructions. Register allocation maps temporaries (program and compiler-generated
variables in the IR) to processor registers or to memory. Instruction scheduling reorders instructions
to improve the total latency or throughput. This survey is concerned with combinatorial approaches
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Instruction Scheduling
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Abstract. This paper introduces a constraint model and solving tech-
niques for code generation in a compiler back-end. It contributes a new
model for global register allocation that combines several advanced as-
pects: multiple register banks (subsuming spilling to memory), coalesc-
ing, and packing. The model is extended to include instruction scheduling
and bundling. The paper introduces a decomposition scheme exploit-
ing the underlying program structure and exhibiting robust behavior for
functions with thousands of instructions. Evaluation shows that code
quality is on par with LLVM, a state-of-the-art compiler infrastructure.
The paper makes important contributions to the applicability of con-
straint programming as well as compiler construction: essential concepts
are unified in a high-level model that can be solved by readily available
modern solvers. This is a significant step towards basing code generation
entirely on a high-level model and by this facilitates the construction of
correct, simple, flexible, robust, and high-quality code generators.

1 Introduction

Compilers consist of a front-end and a back-end. The front-end analyzes the
input program, performs architecture-independent optimizations, and generates
an intermediate representation (IR) of the input program. The back-end takes the
IR and generates assembly code for a particular processor. This paper introduces
a constraint model and solving techniques for substantial parts of a compiler
back-end and contributes an important step towards compiler back-ends that
exclusively use a constraint model for code generation.

Today’s back-ends typically generate code in stages: instruction selection
(choose appropriate instructions for the program being compiled) is followed
by register allocation (assign variables to registers or memory) and instruction
scheduling (order instructions to improve their throughput). Each stage com-
monly executes a heuristic algorithm as taking optimal decisions is considered
either too complex or computationally infeasible. Both staging and heuristics
compromise the quality of the generated code and by design preclude optimal
code generation. Capturing common architectural features and adapting to new
architectures and frequent processor revisions is difficult and error-prone with

Constraint-based Register
AllocaƟon and InstrucƟon
Scheduling. In CP, 2012

Combinatorial Spill Code Optimization
and Ultimate Coalescing

Roberto Castañeda Lozano Mats Carlsson

SCALE, Swedish Institute of Computer Science,
Sweden

{rcas,matsc}@sics.se

Gabriel Hjort Blindell Christian Schulte

SCALE, School of ICT, KTH Royal Institute of
Technology, Sweden

{ghb,cschulte}@kth.se

Abstract

This paper presents a novel combinatorial model that integrates
global register allocation based on ultimate coalescing, spill code
optimization, register packing, and multiple register banks with in-
struction scheduling (including VLIW). The model exploits alter-
native temporaries that hold the same value as a new concept for
ultimate coalescing and spill code optimization.

The paper presents Unison as a code generator based on the
model and advanced solving techniques using constraint program-
ming. Thorough experiments using MediaBench and a processor
(Hexagon) that are typical for embedded systems demonstrate that
Unison: is robust and scalable; generates faster code than LLVM
(up to 41% with a mean improvement of 7%); possibly generates
optimal code (for 29% of the experiments); effortlessly supports
different optimization criteria (code size on par with LLVM).

Unison is significant as it addresses the same aspects as tradi-
tional code generation algorithms, yet is based on a simple inte-
grated model and robustly can generate optimal code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, code generation, optimization;
D.3.2 [Programming Languages]: Language Classifications—
constraint and logic languages; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—backtracking,
scheduling

Keywords spill code optimization; ultimate coalescing; combina-
torial optimization; register allocation; instruction scheduling

1. Introduction

Register allocation and instruction scheduling are essential aspects
of generating assembly code during compilation. They are particu-
larly relevant for embedded processors such as Qualcomm’s Hexa-
gon or Recore Systems’ Xentium with additional challenges such as
very long instruction word (VLIW) capabilities and irregular reg-
ister banks. This paper presents a novel combinatorial model and
Unison as a code generator using the model. The model is for-
mally expressed by variables and relations (constraints) between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

LCTES ’14, June 12–13, 2014, Edinburgh, United Kingdom.
Copyright © 2014 ACM 978-1-4503-2877-7/14/06. . . $15.00.
http://dx.doi.org/10.1145/2597809.2597815

variables. Unison uses constraint programming as a combinatorial
optimization technique to solve the model and thereby generates
potentially optimal assembly code for a given input function and
processor architecture. Unison addresses all major subproblems of
integrated register allocation and instruction scheduling. This ap-
proach overcomes significant limitations of previous work while
being scalable and robust (wrt. different input functions) and pro-
duces better assembly code than traditional algorithms.

Today’s compilers typically generate assembly in stages: in-
struction selection is followed by register allocation and instruction
scheduling. Each stage commonly executes a heuristic algorithm as
taking optimal decisions is considered to be computationally infea-
sible. By design, both staging and heuristic algorithms compromise
the quality of the generated code. Moreover, heuristic algorithms
are difficult to adapt to new architectural features and frequent pro-
cessor revisions, particularly for embedded processors. Using in-
stead a combinatorial model simplifies the construction of compil-
ers while generating potentially optimal code.

Existing combinatorial models of register allocation and in-
struction scheduling predefine which instructions access each tem-
porary (program variable) and thus do not support the substitution
of temporaries that hold the same value. This is a significant lim-
itation that precludes two essential optimizations: spill code opti-
mization (remove unnecessary memory access instructions inserted
during register allocation) and ultimate coalescing (remove unnec-
essary register-to-register copy instructions considering the value
of each temporary). This paper introduces alternative temporaries
as an approach that supports the substitution of temporaries and
thus enables spill code optimization and ultimate coalescing.

Approach. This paper assumes functions in Static Single Assign-
ment (SSA) form after instruction selection as input. SSA functions
are transformed to Linear SSA (LSSA) where each temporary is
live in a single basic block and extended with optional copy instruc-
tions to support register allocation as in [3]. LSSA functions are
augmented with alternative temporaries, a novel abstraction that
supports the substitution of temporaries and enables spill code op-
timization and ultimate coalescing.

LSSA functions with alternative temporaries are transformed
into combinatorial problems according to a formal model of reg-
ister allocation and instruction scheduling which is parameterized
with respect to a generic processor description. The model captures
all major subproblems of global register allocation, including: spill
code optimization and ultimate coalescing; multiple register banks;
and register packing, where several small temporaries can be as-
signed to the same register. These subproblems are integrated with
instruction scheduling and bundling for VLIW processors. The sin-
gle model reflects the trade-off between interdependent register al-
location and instruction scheduling decisions.

Combinatorial Spill Code
OpƟmizaƟon and UlƟmate
Coalescing. In LCTES, 2014

Combinatorial Register Allocation and Instruction Scheduling

ROBERTO CASTAÑEDA LOZANO, RISE SICS, Sweden and KTH Royal Institute of Technology, Sweden

MATS CARLSSON, RISE SICS, Sweden

GABRIEL HJORT BLINDELL, KTH Royal Institute of Technology, Sweden

CHRISTIAN SCHULTE, KTH Royal Institute of Technology, Sweden and RISE SICS, Sweden

This paper introduces a combinatorial optimization approach to register allocation and instruction scheduling, two central compiler
problems. Combinatorial optimization has the potential to solve these problems optimally and to exploit processor-specific features
readily. Our approach is the first to leverage this potential in practice: it captures the complete set of program transformations used in
state-of-the-art compilers, scales to medium-sized functions of up to 1000 instructions, and generates executable code. This level of
practicality is reached by using constraint programming, a particularly suitable combinatorial optimization technique. Unison, the
implementation of our approach, is open source, used in industry, and integrated with the LLVM toolchain.

An extensive evaluation confirms that Unison generates better code than LLVM while scaling to medium-sized functions. The
evaluation uses systematically selected benchmarks from MediaBench and SPEC CPU2006 and different processor architectures
(Hexagon, ARM, MIPS). Mean estimated speedup ranges from 1% to 9.3% and mean code size reduction ranges from 0.8% to 3.9%
for the different architectures. Executing the generated code on Hexagon confirms that the estimated speedup indeed results in
actual speedup. Given a fixed time limit, Unison solves optimally functions of up to 647 instructions, improves functions of up to 874
instructions, and achieves more than 85% of the potentially optimal speed for 90% of the functions on Hexagon.

The results show that our combinatorial approach can be used in practice to trade compilation time for code quality beyond the
usual compiler optimization levels, fully exploit processor-specific features, and identify improvement opportunities in heuristic
algorithms.

CCS Concepts: • Computing methodologies→Discrete space search; Planning and scheduling; • Software and its engineering
→ Compilers; Constraint and logic languages;
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Abstract
This paper describes Unison, a simple, flexible, and potentially op-
timal software tool that performs register allocation and instruction
scheduling in integration using combinatorial optimization. The
tool can be used as an alternative or as a complement to traditional
approaches, which are fast but complex and suboptimal. Unison is
most suitable whenever high-quality code is required and longer
compilation times can be tolerated (such as in embedded systems
or library releases), or the targeted processors are so irregular that
traditional compilers fail to generate satisfactory code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, code generation, optimization;
D.3.2 [Programming Languages]: Language Classifications—
constraint and logic languages; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—backtracking,
scheduling

Keywords combinatorial optimization; register allocation; in-
struction scheduling

1. Introduction
Register allocation (assigning program variables to processor reg-
isters or memory) and instruction scheduling (reordering proces-
sor instructions to increase throughput) are central problems in op-
timizing compilers. Given the hard combinatorial nature of these
problems and their interdependencies, traditional compilers resort
to heuristic algorithms and phase decoupling, which trades code
quality and flexibility for compilation speed.

This paper describes Unison [1, 3, 4], a simple, flexible, and po-
tentially optimal software tool that performs integrated register al-
location and instruction scheduling using combinatorial optimiza-
tion. Unison formalizes both problems as combinatorial models
and solves them simultaneously, taking into account their interde-
pendencies, considering the involved trade-offs, and exploring the
full solution space to deliver optimal assembly code. Unlike earlier
combinatorial approaches, Unison captures register allocation in its

low-level IR

Unison IR
construction

register
allocation

instruction
scheduling

integrated
combinatorial

model

generic
solver

assembly
code

processor
description

(1)

(2)

(3)

(4)

(5)

(6) (7)

(8)

Figure 1. Unison’s approach.

full scope while robustly scaling to medium-size functions. A de-
tailed comparison with related approaches is available in a survey
by Castañeda Lozano and Schulte [2, Sect. 5].

Approach. Unison approaches register allocation and instruction
scheduling as shown in Figure 1. A low-level intermediate repre-
sentation (IR) of a function, where processor instructions are al-
ready selected, is taken as input (1). The input function is trans-
formed into Unison IR (2), which exposes the structure of the pro-
gram and the multiple decisions involved in the problem. Taking
the Unison IR of the function and a description of the processor (3),
a combinatorial model of each of the problems is formulated (4,5)
consisting of variables representing the problem decisions, program
and processor constraints over the variables, and a cost function to
be minimized. The combinatorial models are then integrated into a
single model (6) which is solved by a generic solver (7), delivering
assembly code (8) that is potentially optimal.

2. Unison IR
Unison operates on a custom IR (Unison IR), which exposes
underlying structures of the program (such as live ranges) that are
key to register allocation and instruction scheduling, and problem
decisions such as whether to spill a certain program variable (called
temporary at Unison’s level). Unison IR has the following distin-
guishing features:

linear static single assignment form (LSSA) LSSA [3] is a stricter
form of static single assignment (SSA) form in which tempo-
raries are local to basic blocks, and relations across blocks are
captured by a generalization of the φ-congruence. This form is
key to representing liveness in the combinatorial model.

optional copies Unison IR includes optional copy instructions [3]
which can be inactivated or implemented by alternative proces-
sor instructions (such as register-to-register moves, store, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CC’16, March 17–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-4241-4/16/03...$15.00
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Register Assignment

Map temporaries to individual registers

t2← mul t1,2
t3← sub t1,1
t4← add t2, t3

ret t4

R2← mul R1,2
R3← sub R1,1
R4← add R2,R3

ret R4

R2← mul R1,2
R1← sub R1,1
R1← add R2,R1

ret R1
t1 ↦ R1
t2 ↦ R2
t3 ↦ R3
t4 ↦ R4

t1 ↦ R1
t2 ↦ R2
t3 ↦ R1
t4 ↦ R1

Problem: limited number of registers

Reuse registers as much as possible

When can two temps reuse a register?

11 / 43



Register Assignment: Liveness

Live range of a temp t: points at which tmight be needed

between definiƟon and last use

t2 ← mul ⋯

⋯ ← sub ⋯

⋯ ← add t2, ⋯

ret ⋯

t2
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Register Assignment: Register Reuse

When can two temps reuse a register?

if their live ranges do not interfere

t2 ← mul t1, 2

t3 ← sub t1, 1

t4 ← add t2, t3

ret t4

t1 t2 t3 t4

t3 and t4 can use the same register

t2 and t3 cannot

13 / 43



Register Assignment: Model

to which register is each temp assigned?

Register Assignment Rectangle Packing

temp live ranges rectangles

interfering temps cannot share registers rectangles cannot overlap

R1 R2 R3 …t1 t2 t3 t4
t1 t2 t3

t4

R1 R2 R3 …

0

1

2

Ɵm
e

t1 t2t3
t4

Based on abstracƟon by Pereira and Palsberg (PLDI 2008)
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Spilling

Allocate temporaries to memory
applied when no more registers are available

t2← mul ⋯

⋮

⋯← add t2,⋯

t2← mul ⋯
store t2

⋮
t3← load
⋯← add t3,⋯

spill t2

16 / 43



Live Range Spliƫng

Split a temporary live range into shorter ones
can improve register reuse

t2← mul ⋯

⋮

⋯← add t2,⋯

t2← mul ⋯
⋮

t3← move t2
⋮

⋯← add t3,⋯
split t2

17 / 43



Coalescing

Merge split temporaries
to reduce overhead of move instrucƟons

t2← mul ⋯
⋮

t3← move t2
⋮

⋯← add t3,⋯

t2← mul ⋯

⋮

⋯← add t2,⋯
coalesce t2, t3

18 / 43



Spilling, Spliƫng, and Coalescing: Model

Common mechanism: insert or remove copies
Spilling: insert reg-to-mem and mem-to-reg copies
Spliƫng: insert reg-to-reg copies
Coalescing: remove reg-to-reg copies

1 Model memory locaƟons as registers (columns)

2 Extend input program with opƟonal copies:
t2 ← {store,move,�} t1

which instrucƟon implements each copy?
R1 R2 R3 R4 …

…

0

1

2

3

Ɵm
e

…

t1

t2t2

M1 M2 M3 …

…

……
t2

�
storemove
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Other Register AllocaƟon Subproblems

Register packing

Load-store opƟmizaƟon

RematerializaƟon

MulƟ-allocaƟon
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InstrucƟon Scheduling: Model

Map instrucƟons to Ɵme points (issue cycles)

Classic constraint-based scheduling model:

in which cycle is each instrucƟon issued?

Subject to:
precedences
resource constraints

ConnecƟon to register allocaƟon: live ranges

cycle
issue cycle of definer

issue cycle of last user

t

cy
cl
e
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Global Scope

Extend the rectangle packing model to enƟre funcƟons
Temps live in mulƟple basic blocks?

t1

t2 t3

t4

t1≡t2 t1≡t3

t2≡t4 t3≡t4

⋮
t1←
⋮

⋮ ⋮

⋮
← t4
⋮

Decompose them into local temps
Define decomposed temps as congruent (≡)
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Global Scope: Model

Only relaƟon between basic blocks: congruences

Congruent temps are assigned to the same register

R1 R2 …

t1 t2 R1 R2 …
t3 t4

t6t5
R1 R2 …

t7

t8

t1≡ t3
t2≡ t4

t1≡ t7
t6≡ t4
t5≡ t3

t7≡ t6
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Model
minimize ∑

b∈B
weight(b) × cost(b) subject to

no-overlap ({⟨reg(t), reg(t) +width(t), start(t),end(t)⟩ ∶t ∈ Tb ∧ live(t)}) ∀b∈B

reg[temp(p)] = r ∀p∈P ∶ p▷r

reg[temp(p)] ∈ class[p, ins(operaƟon(p))] ∀p∈P ∶ acƟve(operaƟon(p))

acƟve(o) ∀o∈O ∶ ¬copy(o)

live(t) ⇐⇒ acƟve(operaƟon(definer(t))) ⇐⇒
∃p∈users(t) ∶ acƟve(operaƟon(p)) ∧ temp(p) = t ∀t∈T

reg[temp(p)] = reg[temp(q)] ∀p,q∈P ∶ p≡q

issue(operaƟon(q)) ≥ issue(operaƟon(p)) + lat[ins(operaƟon(p))] ∀t ∈ T,∀p ∈ {definer(t)},∀q ∈ users(t) ∶
acƟve(operaƟon(q)) ∧ temp(q) = t

cumulative ({⟨issue(o),dur[ins(o), s], con[ins(o), s]⟩ ∶o ∈ Ob ∧ acƟve(o)}, cap(s)) ∀b∈B,∀s∈S

start(t) = issue(operaƟon(definer(t))) ∀t∈T ∶ live(t)

end(t) = max
p∈users(t) ∶ temp(p)= t

issue(operaƟon(p)) ∀t∈T ∶ live(t)

Generic objecƟve funcƟon: speed, code size, …
Compact: size independent of registers and cycles
Global constraints:

rectangle packing, scheduling with resources
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Solver: DecomposiƟon

Split the problem into simpler subproblems

Solve each subproblem, recombine, and iterate

Improves scalability

issue cycles?
copy instrucƟons?
register of t1, t2? issue cycles?

copy instrucƟons?
register of t3, t4, t5, t6?

issue cycles?
copy instrucƟons?
register of t7?

t1≡ t3
t2≡ t4

t1≡ t7
t6≡ t4
t5≡ t3

t7≡ t6

(master problem)

(subproblem)

(subproblem)

(subproblem)
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Solver: Other Improvements

“Many a liƩle makes a mickle.” (English proverb)
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Experimental Setup

How pracƟcal is our approach?
evaluaƟon of scalability

How effecƟve?
evaluaƟon of code quality (speed and code size)

100 funcƟons from MediaBench and SPEC CPU2006
medium size: up to 1000 instrucƟons

Baseline: LLVM 3.8 (state-of-the-art compiler)
for comparison
as a quality lower bound

Processors:
Hexagon V4: mulƟple-issue, signal processing
ARMv6: single-issue, general-purpose
MIPS32: single-issue, embedded

Solver Ɵme limit: 15 minutes per funcƟon
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Solving Time to OpƟmality by FuncƟon Size

0.1 s

1 s

10 s

100 s

1000 s

10 100 1000
number of instrucƟons

Hexagon

647

ARM

330

MIPS

186

Scales up to medium-size funcƟons
opƟmally up to 647 ins, improves up to 874 ins

Scalability depends on processor
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EsƟmated Speedup over LLVM: ARM
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Slight speedup: 1% mean

BeƩer spilling and coalescing

BeƩer spill code placementBeƩer exploitaƟon of mulƟple-issue capabiliƟes
more instrucƟons per cycle

BeƩer spill code placement

36 / 43



EsƟmated Speedup over LLVM: MIPS
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Moderate speedup: 5.1% mean

BeƩer spilling and coalescing

BeƩer spill code placement

BeƩer exploitaƟon of mulƟple-issue capabiliƟes
more instrucƟons per cycle

BeƩer spill code placement
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EsƟmated Speedup over LLVM: Hexagon
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Significant speedup: 9.3% mean

BeƩer spilling and coalescingBeƩer spill code placement

BeƩer exploitaƟon of mulƟple-issue capabiliƟes
more instrucƟons per cycle

BeƩer spill code placement
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Actual ApplicaƟon Speedup over LLVM

Processor: Hexagon (highest esƟmated speedup)
Benchmarks: MediaBench apps (top 5 funcƟons)
ExecuƟon: Qualcomm’s Hexagon Simulator (high accuracy)
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Moderate speedup: 5.4% mean, accuracy?

↓
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Speedup Accuracy: EsƟmated vs. Actual Speedup
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Strong monotonic relaƟonship (Spearman correlaƟon ρ = 0.77)
Inaccuracies (Wilcoxon signed-rank test)

mostly due to dynamic processor behavior
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Code Size MinimizaƟon

Slight to moderate code size reducƟon over LLVM
(0.8%-3.9% mean depending on the processor)

Aggressive coalescing
scheduling and spilling subordinated

ExploitaƟon of processor-specific features
example: ARM’s 16-bits Thumb-2 instrucƟons
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Future Work

Extend instrucƟon scheduling

Increase model accuracy

Improve scalability

Integrate with instrucƟon selecƟon

…
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Conclusion

The integraƟon of register allocaƟon and instrucƟon scheduling
using constraint programming is pracƟcal and effecƟve.

pracƟcal: complete, fairly scalable, executable
finally catching up with heurisƟc approaches
used in industry today

effecƟve: beƩer code than heurisƟc approaches
works today: actual speedup and code size reducƟon
works tomorrow:

exploits ever-evolving processor features
adapts to different opƟmizaƟon criteria

unison-code.github.io
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